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We study the “Higgs” amplitude mode in the relativistic quantum O(N ) model in two space dimensions. Using
the nonperturbative renormalization group and the Blaizot–Méndez-Galain–Wschebor approximation (which we
generalize to compute four-point correlation functions), we compute the O(N )-invariant scalar susceptibility at
zero temperature in the vicinity of the quantum critical point. In the ordered phase, we find a well-defined Higgs
resonance for N = 2 and 3 and determine its universal properties. No resonance is found for N � 4. In the
disordered phase, the spectral function exhibits a threshold behavior with no Higgs-like peak. We also show that
for N = 2, the Higgs mode manifests itself as a very broad peak in the longitudinal susceptibility in spite of the
infrared divergence of the latter. We compare our findings with results from quantum Monte Carlo simulations
and ε = 4 − (d + 1) expansion near d = 3.

DOI: 10.1103/PhysRevB.91.224501 PACS number(s): 05.30.Rt, 74.40.Kb, 75.10.−b

I. INTRODUCTION

Relativistic quantum field theories with O(N ) symmetry
arise in the low-energy description of many condensed-matter
systems: quantum antiferromagnets, superconductors, Bose-
Einstein condensates in optical lattices, etc. In the ordered
phase, where the O(N ) symmetry is spontaneously broken,
mean-field theory predicts N − 1 gapless Goldstone modes
corresponding to fluctuations of the direction of the N -
component quantum field, and a gapped amplitude “Higgs”
mode (see, for instance, Ref. [1]).

The existence of the Higgs mode near the quantum critical
point (QCP) separating the ordered and disordered phases,
when fluctuations are taken into account beyond mean-field
theory, has been a subject of debate. Does the Higgs mode
exist as a resonancelike feature or is it overdamped due to
its coupling to the Goldstone modes? Space dimensionality d

plays a crucial role. In three dimensions, the QCP corresponds
to a Gaussian fixed point of the renormalization group and in-
teractions are suppressed at low energies; the Higgs resonance
becomes sharper and sharper as the QCP is approached. This
has been beautifully confirmed in the quantum antiferromagnet
TlCuCl3 [2,3]. By contrast, for 2 < d + 1 < 4, the QCP
corresponds to the Wilson-Fisher fixed point and interactions
are strong at low energies; the existence of a well-defined
Higgs resonance is not guaranteed. Furthermore, the visibility
of the Higgs mode strongly depends on the symmetry of
the probe [4]. For 2 < d + 1 < 4, emission of Goldstone
bosons leads to an infrared divergence in the longitudinal
susceptibility [5–8], which is the standard correlation function
to probe the amplitude mode, thus making the observation
of the Higgs resonance very difficult. The O(N )-invariant
scalar susceptibility (i.e., the correlation function of the square
of the order-parameter field) has a spectral weight which
vanishes at low energies and is a much better candidate [4].
The Higgs mode in a two-dimensional system has been
observed in a Bose gas in an optical lattice in the vicinity
of the superfluid–Mott-insulator transition [9] and in a dis-
ordered superconductor close to the superconductor-insulator
transition [10].

The Higgs mode near a two-dimensional relativistic QCP
has been studied with various techniques: large-N expan-
sion [11], quantum Monte Carlo simulations [12–15], non-
perturbative renormalization group (NPRG) [16], and ε =
4 − (d + 1) expansion about d = 3 [17]. For N = 2, these
studies have conclusively shown the existence of a Higgs
resonance in the ordered phase which persists arbitrary close
to the QCP. However, besides quantitative issues, such as the
precise value of the mass of the Higgs mode, some basic
qualitative questions remain: Is there a Higgs-like resonance
also in the disordered phase? Does the Higgs resonance exist
for larger values of N , e.g., N = 3 and 4?

In this paper, we address these issues using the NPRG
approach [18–20]. More specifically, we use the Blaizot–
Méndez-Galain–Wschebor (BMW) approach, an approxima-
tion scheme to the exact RG equations which allows one to
obtain the momentum and frequency dependence of correla-
tion functions [21–25]. The BMW approximation is also the
starting point of the NPRG study reported in Ref. [16]. In
that work, however, additional (uncontrolled) approximations
were made in order to simplify the numerical solution of the
NPRG-BMW equations.

The main results of our analysis, which is restricted
to zero temperature, are the following. (i) In the ordered
phase, we find a well-defined Higgs resonance for N = 2
in agreement with previous works [12–17]. (ii) We show
that a Higgs resonance is also present for N = 3 but not
for N = 4. This differs from previous NPRG analysis [16]
but agrees with Monte Carlo (MC) results [14,15]. (iii) In
the disordered phase we find that the spectral function of the
scalar susceptibility does not exhibit a Higgs-like resonance
peak above the absorption threshold. This contradicts previous
NPRG results [16] and some QMC simulations [13]. On the
other hand, it is corroborated by a separate MC analysis [15],
which found no conclusive evidence for such a resonance, and
is supported by the results of the ε = 4 − (d + 1) expansion.
(iv) Although the longitudinal susceptibility diverges as 1/ω

at low energies due to its coupling to the Goldstone modes, for
N = 2 the Higgs mode manifests itself in the spectral function
as a very broad peak.
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The outline of the paper is as follows. In Sec. II, we
present the NPRG approach to the quantum O(N ) model at
zero temperature. In that limit, the two-dimensional quantum
model is equivalent to the three-dimensional classical model.
We show that the BMW approximation can be extended to
compute four-point correlation functions such as the scalar
susceptibility. We also recall the expected scaling behavior of
the longitudinal, transverse, and scalar susceptibilities near the
QCP. In Sec. III, we show that the BMW approach becomes
exact in the limit N → ∞. The numerical solution of the
RG equations for N � 1 and N = 2,3,4, . . . is discussed
in Sec. IV. Both the longitudinal and scalar susceptibilities
are considered. We compute the spectral functions and the
corresponding universal scaling functions, as well as the mass
of the Higgs mode and the stiffness. In Sec. V, we provide a
summary and conclusion.

II. NPRG APPROACH

The two-dimensional quantum O(N ) model is defined by
the (Euclidean) action

S[ϕ] =
∫

x

{
1

2
(∇ϕ)2 + 1

2c2
(∂τϕ)2

+ r0

2
ϕ2 + u0

4!N
(ϕ2)2

}
, (1)

where we use the shorthand notation

x = (r,τ ),
∫

x
=

∫ β

0
dτ

∫
d2r. (2)

ϕ(x) is an N -component real field, τ ∈ [0,β] an imaginary
time, and r a two-dimensional coordinate (β = 1/T and we set
� = kB = 1). r0 and u0 are temperature-independent coupling
constants and c is the (bare) velocity of the ϕ field. The factor
1/N in Eq. (1) is introduced to obtain a meaningful limit N →
∞ (with u0 fixed). The model is regularized by an ultraviolet
cutoff �. In order to maintain the Lorentz invariance of the
action (1) at zero temperature, it is natural to implement a
cutoff on both momenta and frequencies.

The phase diagram of the quantum O(N ) model with N � 2
is well known. At zero temperature, there is a quantum phase
transition between a disordered phase (r0 > r0c) and an ordered
phase (r0 < r0c) where the O(N ) symmetry of the action (1)
is spontaneously broken (u0 and c are considered as fixed
parameters). The QCP at r0 = r0c is in the universality class of
the three-dimensional classical O(N ) model with a dynamical
critical exponent z = 1 (this value follows from Lorentz
invariance); the phase transition is governed by the three-
dimensional Wilson-Fisher fixed point. At finite temperatures,
the system is always disordered for N � 2, in agreement with
the Mermin-Wagner theorem. For N = 2 and r0 < r0c, there
is a finite-temperature Berezinskii-Kosterlitz-Thouless (BKT)
phase transition [26–28] and the system exhibits algebraic
order at low temperatures. The BKT transition temperature
line TBKT terminates at the QCP r0 = r0c.

In the following, we consider only the zero-temperature
limit where the two-dimensional quantum O(N ) model is
equivalent to the three-dimensional classical O(N ) model. For
convenience, we set the velocity c equal to one so that the

action (1) takes the usual form of the classical O(N ) model
with x a three-dimensional space variable. Having in mind
the two-dimensional quantum O(N ) model, we shall refer
to the critical point of the three-dimensional classical O(N ) as
the QCP. In Fourier space, a correlation function χ (px,py,pz)
computed in the classical model should be identified with the
correlation function χ (px,py,iω) in the quantum model (with
ω a bosonic Matsubara frequency) and yields the retarded dy-
namical correlation function χR(px,py,ω) ≡ χ (px,py,iω →
ω + i0+) after analytical continuation iω → ω + i0+. In the
following, we shall often use the notation χR(ω) for χR(px =
py = 0,ω) and χ ′′(ω) = Im[χR(ω)].

A. Scale-dependent effective action �k

To implement the NPRG approach, we add to the action an
infrared regulator term

	Sk[ϕ] = 1

2

∑
q,i

ϕi(−q)Rk(q)ϕi(q), (3)

such that fluctuations are smoothly taken into account as the
momentum scale k varies from the ultraviolet cutoff � down
to 0 [18–20]. The cutoff function in (3) is defined by

Rk(q) = Zkq2r

(
q2

k2

)
, r(y) = α

ey − 1
, (4)

where α is a constant of order one (we choose α = 2.25) and
Zk a field renormalization factor defined in Sec. II D [29].
Thus, the 	Sk term suppresses fluctuations with momenta
|q| � k but leaves unaffected those with |q| � k. We consider
the k-dependent partition function

Zk[J,h] =
∫

D[ϕ] e−S[ϕ]−	Sk [ϕ]+∫
x(J·ϕ+hϕ2), (5)

in the presence of external sources J and h. The mean value of
the field is defined by

φk[x; J,h] = δ ln Zk[J,h]

δJ(x)
= 〈ϕ(x)〉. (6)

The bilinear source h will allow us to compute the scalar
susceptibility (but will eventually be set to zero).

The central quantity in the NPRG approach is the scale-
dependent effective action

k[φ,h] = − ln Zk[J,h] +
∫

x
J · φ − 	Sk[φ], (7)

defined as a modified Legendre transform of − ln Zk[J,h], wrt
the linear source J, which includes the subtraction of 	Sk[φ].
In Eq. (7), J(x) ≡ Jk[x; φ,h] is obtained by inverting Eq. (6).
Assuming that for k = � the fluctuations are completely
suppressed by the 	Sk term, we have

�[φ,h] = S[φ] −
∫

x
hφ2. (8)

On the other hand, the effective action of the original
model (1) is given by k=0 since Rk=0 vanishes. The NPRG
approach aims at determining k=0 from � using Wetterich’s
equation [30]

∂kk[φ,h] = 1
2 Tr

{
Ṙk

(


(2,0)
k [φ,h] + Rk

)−1}
, (9)
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where Ṙk = ∂kRk and 
(2,0)
k [φ,h] denotes the second-order

functional derivative of k[φ,h] with respect to φ. In Fourier
space, the trace involves a sum over momenta as well as the
O(N ) index of the φ field.

Most of the physically relevant information encoded in k

can be obtained either from the effective potential or the one-
particle-irreducible (1PI) vertices. The effective potential is
nothing but k evaluated in a constant, i.e., uniform, field
configuration (up to a volume factor V )

Uk(ρ) = 1

V
k[φ]

∣∣∣∣
φ=const

. (10)

Because of the O(N ) symmetry of k , Uk is a function of
the O(N ) invariant ρ = φ2/2. We denote by ρ0,k the value
of ρ at the minimum of the effective potential. Spontaneous
symmetry breaking of the O(N ) symmetry is characterized
by a nonvanishing expectation value of the field ϕ, i.e.,
limk→0 ρ0,k = ρ0 > 0. In this case, the effective potential
Uk=0(ρ) is constant (and minimum) for 0 � ρ � ρ0 in agree-
ment with the convexity of the Legendre transform k=0[φ].
At the QCP (r0 = r0c), ρ0 = 0 but ρ0,k > 0 for all nonzero
values of k.

The 1PI vertices are defined by


(n,m)
k,{ij }[{xj },{yj }; φ,h]

= δn+mk[φ,h]

δφi1 (x1) · · · δφin(xn)δh(y1) · · · δh(ym)
. (11)

The correlation functions evaluated for h = 0 and in a uniform
field configuration are determined by the vertices


(n,m)
k,{ij }({xj },{yj }; φ) = 

(n,m)
k,{ij }[{xj },{yj }; φ,h]| φ=const

h=0
. (12)

In particular, the propagator Gk,ij (p,φ) = 〈ϕi(p)ϕj (−p)〉h=0

in a uniform field is obtained from the matrix equation

Gk(p,φ) = (


(2,0)
k (p,φ) + Rk

)−1
, (13)

where 
(2,0)
k (p,φ) ≡ 

(2,0)
k (p,−p,φ). The O(N ) symmetry

allows us to write


(2,0)
k,ij (p,φ) = δi,jA,k(p,ρ) + φiφjB,k(p,ρ), (14)

which yields the longitudinal (L) and transverse (T) parts of
the propagator

Gk,L(p,ρ) = [A,k(p,ρ) + 2ρB,k(p,ρ) + Rk(p)]−1,

Gk,T(p,ρ) = [A,k(p,ρ) + Rk(p)]−1. (15)

Due to rotation invariance in space, two-point vertices and
correlation functions in (14) and (15) are functions of p = |p|.

Important information can be obtained from the lon-
gitudinal and transverse susceptibilities that we define
by

χα(p) = Gk=0,α(p,ρ0,k=0) (α = L,T). (16)

In the disordered phase (ρ0 = 0), χL(p) = χT(p) ≡ χL,T(p).
The single-particle excitation gap 	 is obtained from the
vanishing of the spectral function χ ′′

L,T(p,ω) = Im[χR
L,T(p,ω)]

for |ω| < 	. The excitation gap manifests itself as a sharp peak
in χ ′′

L,T(ω) ≡ χ ′′
L,T(p = 0,ω) (see Sec. IV B 2). In the ordered

phase, the stiffness ρs is defined by [31]

χT(p) = 2ρ0

ρsp2
for p → 0. (17)

For two systems located symmetrically wrt the QCP (i.e.,
corresponding to the same value of |r0 − r0c|), one in the
ordered phase (with stiffness ρs) and the other in the disordered
phase (with excitation gap 	), the ratio ρs/	 is a universal
number which depends only on N . This allows us to use 	

as the characteristic energy scale in both the disordered and
ordered phases (in the latter case, 	 is defined as the excitation
gap at the point located symmetrically wrt the QCP) [11]. Note
that 	 and ρs vanish as |r0 − r0c|ν as we approach the QCP.

In the universal regime near the QCP (scaling limit) [1],

χα(p) = Zα,±	η−2�̃α,±

(
p

	

)
,

χ ′′
α (ω) = Im

[
χR

α (ω)
] = Zα,±	η−2�α,±

(
ω

	

)
,

(18)

where η is the anomalous dimension of the ϕ field at the QCP.
�̃α,± and �α,± are universal scaling functions and Zα,± a
nonuniversal constant with dimension of (length)η. The index
+/− refers to the disordered and ordered phases, respectively.
At the QCP (	 = 0), χα(p) ∼ pη−2 and χ ′′

α (ω) ∼ |ω|η−2.
Since χ ′′

L(ω) and χ ′′
T(ω) are odd in ω we shall only consider

the case ω � 0 in the following.

B. Scalar susceptibility

We now consider the scalar susceptibility

χs(y − y′) = 〈ϕ(y)2ϕ(y′)2〉 − 〈ϕ(y)2〉〈ϕ(y′)2〉

= δ2 ln Z[J,h]

δh(y)δh(y′)

∣∣∣∣
J=h=0

, (19)

where Z[J,h] ≡ Zk=0[J,h]. Using (7), we can express χs as a
functional derivative of the effective action  ≡ k=0,

χs(y,y′) = − δ̄2[φ̄[h],h]
δ̄h(y)δ̄h(y′)

∣∣∣∣
h=0

, (20)

where the order parameter φ̄[h] is defined by

δ[φ,h]

δφ(x)

∣∣∣∣
φ=φ̄[h]

= 0. (21)

In Eq. (20), δ̄/δ̄h(y) is a total derivative which acts both on
φ̄[h] and the explicit h dependence of the functional [φ,h].
Using (21), one finds

δ̄2[φ̄[h],h]
δ̄h(y)δ̄h(y′)

= (0,2)[y,y′; φ̄[h],h]

+
∫

x


(1,1)
i [x,y; φ̄[h],h]

δφ̄i[x; h]

δh(y′)
(22)

(we use Einstein’s convention for summation over repeated
indices). To compute δφ̄[h]/δh, we take the functional
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χs = +

Γ(n,m) =

(a)

(b) ... ...

1

n

1

m

FIG. 1. Diagrammatic representation of the scalar susceptibil-
ity (25) (a). A vertex (n,m) is represented by a black dot with n solid
lines and m wavy lines (b). Solid lines connecting vertices stand for
the propagator G = (2,0)−1.

derivative of Eq. (21) wrt h, which gives

δφ̄i[x; h]

δh(y)
= −

∫
x′


(2,0)−1
ij [x,x′; φ̄[h],h]

× 
(1,1)
j [x′,y; φ̄[h],h], (23)

where (2,0)−1 is the propagator. From (20), (22), and (23), we
finally deduce

χs(y − y′) = − (0,2)(y,y′,φ̄) +
∫

x,x′


(1,1)
i (x,y,φ̄)

× 
(2,0)−1
ij (x,x′,φ̄)(1,1)

j (x′,y′,φ̄) (24)

(with φ̄ = φ̄[h = 0]) or, in Fourier space,

χs(p) = − (0,2)(p,φ̄) + 
(1,1)
i (p,φ̄)(2,0)−1

ij (p,φ̄)(1,1)
j (p,φ̄).

(25)

The last term corresponds to the part of the scalar susceptibility
which is not 1PI. Equation (25) is shown diagrammatically in
Fig. 1.

Since φ transforms like a vector under O(N ) rotations while
h is a scalar,


(1,1)
i (p,φ) = φif (p,ρ), (0,2)(p,φ) = γ (p,ρ), (26)

where f and γ are functions of p = |p| and the O(N )
invariant ρ. To determine the scalar susceptibility in the NPRG
approach, we must therefore consider the k-dependent vertices


(0,2)
k and 

(1,1)
k,i or, equivalently, the k-dependent functions

fk(p,ρ) and γk(p,ρ).
In the universal regime near the QCP [11],

χs(p) = B± + A±	3−2/ν�̃s,±

(
p

	

)
,

χ ′′
s (ω) = Im

[
χR

s (ω)
] = A±	3−2/ν�s,±

(
ω

	

)
,

(27)

where �̃s,± and �s,± are universal scaling functions and
A±,B± nonuniversal constants. At the QCP (	 = 0), χs(p) −
χs(0) ∼ p3−2/ν and χ ′′

s (ω) ∼ |ω|3−2/ν . Since χ ′′
s (ω) is an odd

function of ω, we shall only consider the case ω > 0 in the
following.

C. BMW approximation

In this section, we first review the BMW approximation
for the solution of the RG equation (9) when h = 0 [21–23].
We then show how this approximation can be extended to the
calculation of the scalar susceptibility.

∂kΓ
(2,0)
k = +

∂kΓ
(0,2)
k = +

∂kΓ
(1,1)
k = +

FIG. 2. Diagrammatic representation of the RG equa-
tions (30), (39), and (40). Signs and symmetry factors are not shown.
The diagrammatic representation of the vertices 

(n,m)
k is the same as

in Fig. 1 and the cross stands for ∂kRk .

1. Effective potential Uk and two-point vertex �
(2,0)
k

Equation (9) cannot be solved exactly. However, it can be
used to derive flow equations for the effective potential and
the 1PI vertices. The effective potential is determined by

∂kUk(ρ) = 1

2

∫
q
Ṙk(q)[Gk,L(q,ρ) + (N − 1)Gk,T(q,ρ)]

(28)
with initial condition U�(ρ) = r0ρ + (u0/6N )ρ2. We use the
notation

1

V

∑
q

→
∫

d3q

(2π )3
≡

∫
q

for V → ∞. (29)

Solving (28) requires to know the propagator Gk = ((2,0)
k +

Rk)−1 and therefore the two-point vertex 
(2,0)
k in a uniform

field. The latter satisfies the equation (Fig. 2)

∂k
(2,0)
k,ij (p,φ)

=
∑

q

∂̃kGk,i1i2 (q,φ)

×
[

1

2


(4,0)
k,ij i2i1

(p,−p,q,−q,φ) − 
(3,0)
k,ii2i3

(p,q,−p − q,φ)

×Gk,i3i4 (p + q,φ)(3,0)
k,j i4i1

(−p,p + q,−q,φ)

]
, (30)

where

∂̃kGk,i1i2 (q,φ) = −Ṙk(q)Gk,i1i3 (q,φ)Gk,i3i2 (q,φ). (31)

More generally, the 1PI vertices satisfy an infinite hierarchy
of equations since ∂k

(n,0)
k involves 

(n+1,0)
k and 

(n+2,0)
k .

The BMW approximation [21–23] allows us to close this
infinite hierarchy of equations. It is based on the observation
that the Ṙk(q) term in (31) restricts the integration over the
loop momentum in (30) to small values |q| � k whereas the
regulator term 	Sk ensures that the vertices 

(n,0)
k (p1 . . . pn,φ)

are regular functions of the momenta when |pi | � k. This
enables us to set q = 0 in the vertices 

(3,0)
k and 

(4,0)
k in (30).
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Noting that in a uniform field,


(3,0)
k,i1i2i3

(p,−p,0,φ) = 1√
V

∂
(2,0)
k,i1i2

(p,−p,φ)

∂φi3

,


(4,0)
k,i1i2i3i4

(p,−p,0,0,φ) = 1

V

∂2
(2,0)
k,i1i2

(p,−p,φ)

∂φi3∂φi4

,

(32)

we obtain a closed equation for the two-point vertex

∂k
(2,0)
k,ij (p,φ) = 1

2

∫
q

[
∂̃kGk,i1i2 (q,φ)

]∂2
(2,0)
k,ij (p,φ)

∂φi1∂φi2

−
∫

q

[
∂̃tGk,i1i2 (q,φ)

]∂
(2,0)
k,ii3

(p,φ)

∂φi2

×Gk,i3i4 (p + q,φ)
∂

(2,0)
k,j i4

(p,φ)

∂φi1

, (33)

which must be solved together with (28).
Equation (33) yields two coupled equations for A,k(p,ρ)

and B,k(p,ρ) [see Eq. (14)]. Following Refs. [21–23], we
introduce self-energies 	A,k and 	B,k defined by

A,k(p,ρ) = p2 + 	A,k(p,ρ) + U ′
k(ρ),

B,k(p,ρ) = 	B,k(p,ρ) + U ′′
k (ρ),

(34)

with 	A,k(p = 0,ρ) = 	B,k(p = 0,ρ) = 0. The effective po-
tential Uk is obtained from the (exact) RG equation (28)
while the self-energies are deduced from the (approximate)
RG equation (33). The final form of the equations is obtained
by writing the self-energies as [21–23]

	A,k(p,ρ) = p2YA,k(p,ρ),

	B,k(p,ρ) = p2YB,k(p,ρ),
(35)

and solve for YA,k and YB,k with initial conditions YA,�(p,ρ) =
YB,�(p,ρ) = 0.

2. Scalar susceptibility

The vertices 
(0,2)
k and 

(1,1)
k in a constant field satisfy the

RG equations

∂k
(0,2)
k (p,φ)

=
∑

q

∂̃kGk,i1i2 (q,φ)

×
[

1

2


(2,2)
k,i2i1

(q,−q,p,−p,φ) − 
(2,1)
k,i2i3

(q,−p − q,p,φ)

×Gk,i3i4 (p + q,φ)(2,1)
k,i4i1

(p + q,−q,−p,φ)

]
(36)

and

∂k
(1,1)
k,i (p,φ)

=
∑

q

∂̃kGk,i1i2 (q,φ)

×
[

1

2


(3,1)
k,ii2i1

(p,q,−q,−p,φ) − 
(3,0)
k,i2i3

(p,q,−p − q,φ)

×Gk,i3i4 (p + q,φ)(2,1)
k,i4i1

(p + q,−q,−p,φ)

]
. (37)

The BMW approximation amounts to setting q = 0 in the
vertices 

(n,m)
k in (36) and (37). Using


(2,1)
k,i1i2

(p,0,−p,φ) = 1√
V

∂
(1,1)
k,i1

(p,−p,φ)

∂φi2

,


(2,2)
k,i1i2

(0,0,p,−p,φ) = 1

V

∂2
(0,2)
k (p,−p,φ)

∂φi1∂φi2

,


(3,1)
k,i1i2i3

(p,0,0,−p,φ) = 1

V

∂2
(1,1)
k,i1

(p,−p,φ)

∂φi2∂φi3

,

(38)

one then obtains closed equations for 
(0,2)
k and 

(1,1)
k :

∂k
(0,2)
k (p,φ) = 1

2

∫
q
∂̃kGk,i1i2 (q,φ)

∂2
(0,2)
k (p,φ)

∂φi2∂φi1

−
∫

q
∂̃kGk,i1i2 (q,φ)

∂
(1,1)
k,i3

(p,φ)

∂φi2

×Gk,i3i4 (p + q,φ)
∂

(1,1)
k,i4

(p,φ)

∂φi1

(39)

and

∂k
(1,1)
k,i (p,φ) = 1

2

∫
q
∂̃kGk,i1i2 (q,φ)

∂2
(1,1)
k,i (p,φ)

∂φi2∂φi1

−
∫

q
∂̃kGk,i1i2 (q,φ)

∂
(2,0)
k,ii3

(p,φ)

∂φi2

×Gk,i3i4 (p + q,φ)
∂

(1,1)
k,i4

(p,φ)

∂φi1

. (40)

Equations (39) and (40) are shown in Fig. 2. They lead to
RG equations for the functions fk and γk defined in (26) with
initial conditions f�(p,ρ) = −2 and γ�(p,ρ) = 0.

D. Explicit form of RG equations

In this section, we give the explicit forms of the flow
equations in the BMW approximation. We define the threshold
functions

J
αβ

k,n(p,ρ) =
∫

q
[∂tRk(q)]Gn−1

k,α (q,ρ)Gk,β (p + q,ρ),

(41)
I

αβ

k,n(ρ) = J
αβ

k,n(p = 0,ρ),

where α,β = L,T and t = ln(k/�) is a (negative) RG “time.”
The derivative Wk(ρ) = U ′

k(ρ) of the effective potential
satisfies the equation

∂tW = 1
2

[
ILL

1
′ + (N − 1)ITT

1
′], (42)

where the primes denote a ρ derivative. Here and in the
following, to alleviate the notations, we do not write the k,
p, and ρ dependence of the functions (and use the notation
p = |p|). The two-point vertex is determined by the flow
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equations

∂tYA = 2ρ

p2

[
J LT

3 (p2Y ′
A + W ′)2 + J TL

3 (p2YB + W ′)2

− (
ILT

3 + ITL
3

)
W ′2] − 1

2
ILL

2 (Y ′
A + 2ρY ′′

A)

− 1

2
ITT

2 [(N − 1)Y ′
A + 2YB] (43)

and

∂tYB = 1

p2

{
(N − 1)

[
J TT

3 (p2YB + W ′)2 − ITT
3 W ′2]

+ J LL
3 [p2(Y ′

A + 2YB + 2ρY ′
B) + 3W ′ + 2ρW ′′]2

− ILL
3 (3W ′ + 2ρW ′′)2 − J LT

3 (p2Y ′
A + W ′)2

+ ILT
3 W ′2 − J TL

3 (p2YB + W ′)2 + ITL
3 W ′2}

− 1

2
ITT

2 (N − 1)Y ′
B − 1

2
ILL

2 (5Y ′
B + 2ρY ′′

B)

+ 1

2ρ

(
ITT

2 − ILL
2

)
YB. (44)

Note that the right-hand side of the last equation is well
defined for ρ → 0 and p → 0 [23]. Equations (42)–(44) were
previously derived in Refs. [21–23].

f and γ satisfy the equations

∂tf = J LL
3 (f + 2ρf ′)[p2(Y ′

A + 2YB + 2ρY ′
B) + 3W ′

+ 2ρW ′′] + (N − 1)J TT
3 f (p2YB + W ′) − ILL

2 ρf ′′

− 1

2
f ′[3ILL

2 + (N − 1)ITT
2

]
(45)

and

∂tγ = (N − 1)J TT
3 f 2 + J LL

3 (f + 2ρf ′)2

− 1
2

[
ILL

2 (γ ′ + 2ργ ′′) + (N − 1)ITT
2 γ ′]. (46)

The QCP manifests itself as a fixed point of the RG
equations provided we use dimensionless flow equations
where all quantities are expressed in units of the running
scale k. We therefore use the following dimensionless variables
(with d = 3):

p̃ = k−1p, ρ̃ = K−1
d Zkk

2−dρ, (47)

and functions [32]

Ũk(ρ̃) = K−1
d k−dUk(ρ),

W̃k(ρ̃) = Z−1
k k−2Wk(ρ),

1 + ỸA,k(p̃,ρ̃) = Z−1
k [1 + YA,k(p,ρ)],

(48)
ỸB,k(p̃,ρ̃) = KdZ

−2
k kd−2YB,k(p,ρ),

f̃k(p̃,ρ̃) = fk(p,ρ),

γ̃k(p̃,ρ̃) = K−1
d Z2

kk
4−dγk(p,ρ),

where K−1
d = 2d−1dπd/2(d/2) is a constant originating from

angular integrals which is introduced here for convenience.
The field renormalization factor Zk is defined by

Zk = ∂
(2,0)
k,T (p,ρ)

∂p2

∣∣∣∣
p=0,ρ=ρ0,k

= 1 + YA,k(p = 0,ρ0,k), (49)

where ρ0,k corresponds to the minimum of the effective
potential Uk(ρ). Equation (49) implies that


(2,0)
k,T (p,ρ0,k)  Zkp2 + Wk(ρ0,k) for p → 0 (50)

so that in the ordered phase the stiffness is simply defined by
ρs,k = 2Zkρ0,k [Eq. (17)]. If we use (50) to estimate the gap
	 in the disordered phase (where ρ0,k=0 = 0), we find

	 =
(

Wk=0(0)

Zk=0

)1/2

. (51)

The numerical solution of the flow equations shows that
this expression is in very good agreement (with an error
smaller than 1‰) with the exact determination of the gap
obtained from the peak in the spectral function χ ′′

L,T(ω)
(Sec. IV B 2).

We also define a (running) anomalous dimension

ηk = −k∂k ln Zk. (52)

At criticality (r0 = r0c), the anomalous dimension is obtained
from η = limk→0 ηk . The normalization condition (49) can
be expressed as ỸA,k(p̃ = 0,ρ̃0,k) = 0 which provides us with
an equation for ηk . This equation takes a simpler form if
we choose ρ = 0 in the definition (49) of Zk [23]. This
choice is, however, not appropriate in the ordered phase
where we are eventually interested in quantities defined at the
nonzero order parameter ρ0,k , which corresponds to a diverging
dimensionless field ρ̃0,k ∼ ρ0,k/k.

III. LARGE-N LIMIT

In this section, following Ref. [21], we show that the BMW
equations become exact and can be solved analytically when
N → ∞. In this limit, k[φ] is of order N and the field
φ is of order

√
N (see Appendix). This implies that γk is

O(N ), Wk , A,k and fk are O(1) (as well as the threshold
functions I

αβ

k,n and J
αβ

k,n) whereas B,k is O(1/N). It follows
that

∂tYA,k = −N

2
ITT

2 Y ′
A,k. (53)

Since YA,� = 0, we deduce YA,k = 	A,k = 0: the momentum
dependence of the transverse propagator is not renormalized
in the large-N limit. The other equations read as

∂tWk = N

2
ITT

1
′,

∂tB,k = NJ TT
3 2

B,k − N

2
ITT

2 ′
B,k,

(54)

∂tfk = NJ TT
3 fkB,k − N

2
ITT

2 f ′
k,

∂tγk = NJ TT
3 f 2

k − N

2
ITT

2 γ ′
k.

To obtain the equation for B,k , we have used ITT
1

′ = −W ′
kI

TT
2

and ITT
2

′ = −2W ′
kI

TT
3 when 	A,k = 0. To solve these equa-

tions, we set W = Wk(ρ) and use the variables (k,W ) instead
of (k,ρ) [21]. This is done introducing the function gk(W ) = ρ
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and using g′
k(W ) = 1/W ′

k(ρ),

∂tgk(W ) = − 1

W ′
k(ρ)

∂tWk(ρ) = N

2
ITT

2

= N

2

∫
q

∂tRk(q)

[q2 + W + Rk(q)]2
. (55)

Since k and W are independent variables, this equation can be
rewritten as

∂tgk(W ) = −N

2
∂t

∫
q

1

q2 + W + Rk(q)
, (56)

where both sides are total derivatives, and we obtain

gk(W ) − g�(W )

= −N

2

∫
q

(
1

q2+W+Rk(q)
− 1

q2+W+R�(q)

)
. (57)

For R�(q) → ∞, using g�(W ) = (3N/u0)(W − r0) we re-
produce the known result in the large-N limit [Eq. (A8)]. For
R�(q) < ∞, we obtain an apparent difference with the exact
result, which is explained by the fact that �[φ] is not given by
S[φ]. This does not matter when one is interested in universal
properties in the vicinity of the QCP: the microscopic physics
can be directly parametrized by �[φ] (which we can choose
to coincide with S[φ]). In that case, however, it is important
to keep the term with R� in (57) for comparison with the
numerical solution of the flow equations in the large-N limit.

To calculate B,k , we use

∂tB,k|W = ∂tB,k|ρ + ′
B,k∂tgk = NJ TT

3 2
B,k (58)

(the prime denotes a ρ derivative), i.e.,

∂t
−1
B,k

∣∣
W

= −NJ TT
3 . (59)

The right-hand side is again a total derivative. Using B,� =
u0/3N , we obtain

B,k(p,ρ) = 1
3N
u0

+ N
2 [�k(p,ρ) − ��(p,ρ)]

, (60)

where

�k(p,ρ) =
∫

q

1

q2 + Wk(ρ) + Rk(q)

× 1

(p + q)2 + Wk(ρ) + Rk(p + q)
. (61)

We recover the large-N result derived in Appendix when
R�(q) → ∞ and �� → 0.

A similar procedure is used to calculate fk and γk . From

∂tfk|W = NJ TT
3 B,kfk, ∂tγk|W = NJ TT

3 f 2
k , (62)

and the initial conditions f� = −2, γ� = 0, we obtain

fk(p,ρ) = −6N

u0
B,k(p,ρ),

γk(p,ρ) = −12N

u0
+

(
6N

u0

)2

B,k(p,ρ),

(63)

in agreement [when R�(q) → ∞] with the results (A15)
and (A18) obtained in the standard large-N approach.

The numerical solution of the flow equations in the large-N
limit is discussed in Sec. IV A.

IV. HIGGS AND LONGITUDINAL SPECTRAL FUNCTIONS

We solve numerically the flow equations with u0 = 200
and � = 1. We use a (p̃,ρ̃) grid of 80 × 200 points with
0 � p̃ � p̃max, 0 � ρ̃ � ρ̃max, p̃max = 8, and ρ̃max = 6N . The
flow equations are integrated using an explicit Euler method
with 	t = −10−4 [t = ln(k/�)]. We use Simpson’s rule to
compute momentum integrals (with an upper cutoff q̃max =
4) and finite-difference evaluation for derivatives. We have
verified the stability of our results wrt to the various parameters
used [number of points in the (p̃,ρ̃) grid, upper cutoff in
momentum integrals, etc.].

The ordered phase requires some care. First, since ρ0,k

converges towards a nonzero value ρ0 for k → 0, ρ̃0,k ∼
ρ0/k diverges and one cannot work with a fixed ρ̃ grid.
To circumvent this difficulty, we start the flow with a fixed
ρ̃ grid but switch to a fixed ρ grid (0 � ρ � ρmax) once
the flow leaves the critical regime to reach the ordered
regime, which occurs for k of the order of the inverse of the
Josephson length ξJ ∼ (r0c − r0)−ν . Second, since Wk(ρ0,k) =
0, Wk(ρ) is negative for ρ < ρ0,k and Gk(p = 0,ρ = 0) =
[Rk(p = 0) + Wk(0)]−1 becomes very large. This behavior
is associated to the approach to convexity of the effective
potential Uk(ρ) [18]. While Gk(p,ρ) should remain strictly
positive, we find that it develops a pole for small k in the BMW
approximation, which leads to a divergence of the threshold
functions (41) and a numerical instability [33]. To cure this
problem, we eliminate from the ρ grid the points for which
Wk(ρ) is smaller than −2 [35]. The grid [ρmin,k,ρmax] becomes
k dependent [34]. When ρmin,k becomes nearly equal to ρ0,k ,
the flow cannot be continued anymore since the minimum of
the effective potential must remain in the range [ρmin,k,ρmax]
for physical quantities (defined for ρ = ρ0,k) to be determined.
However, this procedure allows us to reach small values of k

(typically kmin  0.05	) for which physical quantities have
nearly converged to their k = 0 values (the only exception
is the very low-energy behavior p,|ω| � 	 of correlation
functions, see following) [36]. A more precise estimate of
the k = 0 values can be obtained using an extrapolation of the
type a + bkc.

A momentum-dependent function F (p) ≡ Fk=0(p), such as
a two-point vertex or the scalar susceptibility, is obtained from
the approximation F (p)  Fk=p/p̃max (p) where k = p/p̃max is
the smallest value of k for which the dimensionless momentum
p̃ = p/k is still in the grid [0,p̃max]. We have verified, by
increasing p̃max, that the flow of Fk(p) for k < p/p̃max is negli-
gible. This is due to the fact that, in the cases we are considering
here, p acts as an effective infrared cutoff, while only momenta
of the order of k or smaller contribute to the flow, so that the
flow of the function Fk(p) effectively stops when k � p. To
obtain the retarded dynamical function FR(ω), we compute
F (p) for M momentum values pl (l = 1 . . . M) with typically
M in the range 50–100. One then constructs an M-point Padé
approximant FP (p) which coincides with F (p) for all pl’s,
and FR(ω) is approximated by FP (−iω + ε) (we take ε/	 <

10−4) [37]. Note that in the ordered phase, we cannot deter-
mine F (p) for values of p below kminp̃max = 8kmin  0.4	.
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FIG. 3. (Color online) Scalar susceptibility χs(p) at the QCP
for N = 1000 (solid line) compared to the exact large-N solution
with R� < ∞ (circles) and R� = ∞ (squares). Here and in the
following figures we use arbitrary units for the scalar and longitudinal
susceptibilities.

This prevents us to determine FR(ω) for ω � 0.4	. On the
other hand, in the disordered phase, the spectral functions
we are interested in vanish for ω < 	 or ω < 2	 and there
is no need to compute F (p) and FR(ω) for p or ω smaller
than 0.4	.

A. Large-N limit

As a check of our procedure, we first discuss the numerical
solution of the flow equations in the large-N limit where
comparison with exact results is possible (Sec. III). Figure 3
shows the scalar susceptibility χs(p) obtained for N = 1000
at the QCP. Except for momenta near the cutoff �, we obtain
a very good agreement with the exact solution (63) in the limit
N → ∞ taking into account the finite value of R�(p). For
sufficiently small p, when �k=0(p) becomes very large, the
scalar susceptibility becomes independent of the initial value
R� of the cutoff function. In any case, for universal properties,
the value of R� does not matter.

The spectral functions χ ′′
s (ω) and χ ′′

L(ω) are shown in Fig. 4
for N = 1000, in both the ordered and disordered phases, in
the universal regime near the QCP. Again, the agreement with
the exact results (including nonuniversal prefactors) in the
limit N → ∞ is very good. This validates our procedure to
compute the momentum dependence of correlation functions
as well as the Padé method to obtain the spectral functions.

B. N < ∞
In the following, we discuss the NPRG results obtained for

finite N , in particular N = 2 and 3.

1. QCP

We first solve the equations to determine r0c and the
critical exponents ν and η. The anomalous dimension η

is directly obtained from limk→0 ηk when r0 = r0c. The
correlation-length exponent ν is deduced from the behavior
of W̃k(0)  W̃ ∗(0) + Ce−t/ν at very long time |t | (since the
condition r0 = r0c is never exactly fulfilled the RG trajectories
will always eventually flow away from the fixed point with an

FIG. 4. (Color online) Spectral functions χ ′′
s (ω) and χ ′′

L (ω) in the
ordered and disordered phases for N = 1000 (solid line), compared
to the exact large-N solution (symbols). In the disordered phase, the
exact solution for χ ′′

L (ω) = χ ′′
T (ω) ∼ δ(ω − 	) is not shown.

escape rate given by 1/ν). Our results agree both with previous
NPRG-BMW calculations [23] and Monte Carlo estimates
(see Tables I and II).

Figure 5 shows χL,T(p) and χs(p) at criticality for N = 2
and 3. In the universal regime p � pG, where pG is the inverse
of the Ginzburg length ξG ∼ 24π/u0, we find χL,T(p) ∼
1/p2−η where the value of the anomalous dimension, η 
0.0423 for N = 2 and η  0.0411 for N = 3, agrees with the
estimate obtained from the running anomalous dimension ηk

(Table II). As for the scalar susceptibility, we find χs(p) ∼ pθ

with θ  0.0345 for N = 2 and θ  0.230 for N = 3. If we
use the expected relation θ = 3 − 2/ν [Eqs. (27)], we obtain
ν  0.674 for N = 2 and ν  0.722 for N = 3, in very good

TABLE I. Critical exponent ν obtained in the NPRG approach,
from either Wk(0) (Sec. IV B 1) or χs (Sec. IV B 3), compared to
Monte Carlo (MC) simulations.

N From Wk(0) From χs MC

2 0.673 0.674 0.6717(1) [38]
3 0.714 0.722 0.7112(5) [39]
4 0.754 0.766 0.749(2) [40]
5 0.787 0.804
6 0.816 0.835
8 0.860 0.879
10 0.893 0.906
100 0.990 0.992
1000 0.999 0.999
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TABLE II. Same as Table I but for the anomalous dimension η

(defined by η = limk→0 ηk when r0 = r0c).

N NPRG MC

2 0.0423 0.0381(2) [38]
3 0.0411 0.0375(5) [39]
4 0.0386 0.0365(10) [40]
5 0.0354
6 0.0321
8 0.0264
10 0.0220
100 0.002 33
1000 0.000 233

agreement with our previous estimates of ν based on the
behavior of W̃k(0) in the close vicinity of the fixed point
(Table I).

2. Disordered phase

Figures 6 and 7 show χL,T(p) and χs(p) and their spectral
functions in the disordered phase for N = 2 and 3. The various
curves, obtained for different values of r0 − r0c, show a data
collapse in agreement with the scaling forms (18) and (27)
expected in the critical regime. The excitation gap 	, deduced
from the peak in the spectral function χ ′′

L,T(ω), is in very good
agreement with the approximate expression (51).

The spectral function χ ′′
s (ω) of the scalar susceptibility

vanishes for |ω| < 2	. Contrary to previous conclusions based
on QMC and NPRG [12,13,16], we find that χ ′′

s (ω) rises
smoothly above the threshold at ω = 2	 with no sign of a local
maximum for ω � 2	. The authors of Ref. [15] argued that
in spite of the maximum observed above the threshold in their

FIG. 5. (Color online) |χs(p)−χs(0)|/p3−2/ν and χL,T(p)/p−2+η

at the QCP for N = 2 and 3. The normalization is chosen to have a
ratio equal to one for p → 0.

FIG. 6. (Color online) χL,T(p) and χ ′′
L,T(ω) in the disordered

phase for N = 2 and 3. The solid line and the symbols correspond to
different values of r0 − r0c.

MC simulations, there is inclusive evidence for a resonance
at finite frequency in the disordered phase (the peak carries
a small spectral weight and its position is not very robust).
We also note that no resonance is obtained in the 4 − (d + 1)
expansion [17].

FIG. 7. (Color online) Same as Fig. 6 but for the scalar suscepti-
bility χs .
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FIG. 8. (Color online) Derivative Wk(ρ) of the effective poten-
tial, shown in the range [ρmin,k,ρmax], for various values of k [from
bottom to top: ln(k/�) = −11.5, −12.25, −13, and −15.25] and
N = 2. The inset shows the corresponding flow of ρ0,k vs ln(k/�).

3. Ordered phase

In Fig. 8, we show the derivative Wk(ρ) of the effective
potential for various values of k and N = 2. As explained
above, for small k we must use a k-dependent grid [ρmin,k,ρmax]
to get rid of the smallest ρ values for which the propagator is
not positive. For k = kmin  0.05	, ρmin,k is very close to ρ0,k

and we cannot continue the flow. In Fig. 8, we also show the
behavior of ρ0,k and its convergence towards its k = 0 value.
The extrapolated value at k = 0 differs from the value at kmin

by less than 1%.
Table III shows the universal ratio ρs/(N	) where ρs and 	

are computed for the same distance |r0 − r0c| to the QCP (see
the discussion at the end of Sec. II A). For small values of N ,
we find significant deviations wrt previous NPRG results [41].
The value for N = 2 is now much closer to the MC estimate
of Ref. [15] and the agreement is also satisfactory for N = 3.
For N = 1000, we recover the large-N result.

In Fig. 9, we show χs(p) and χ ′′
s (ω) in the ordered phase for

N = 2 and 3. Again, we observe data collapse in agreement
with the scaling forms (27). For N = 2, we find a well-defined
Higgs resonance whose position ω = mH and full width at
half-maximum vanishes as the QCP is approached. For mH �
ω � pG, we recover the critical scaling χ ′′

s (ω) ∼ ω3−2/ν . Up
to a multiplicative factor which depends on the nonuniversal
factor A− [Eq. (27)], the shape of the resonance, given by the
universal scaling function �s,−, is in very good agreement with
the MC result of Refs. [14,15]. The Higgs resonance is still
visible, although less pronounced, for N = 3. This observation

TABLE III. Universal ratio ρs/(N	) obtained from the NPRG in
the BMW approximation (NPRG BMW). Also shown are the previous
NPRG results obtained from a derivative expansion of the effective
action [41] (NPRG DE) and from Monte Carlo simulations [15] (MC).
The exact result in the limit N → ∞ is 1/4π  0.0796.

N 1000 10 8 6 4 3 2

NPRG BMW 0.0796 0.0803 0.0829 0.0903 0.111 0.137 0.193
NPRG DE [41] 0.0838 0.085 0.086 0.089 0.096 0.106 0.132
MC [15] 0.114 0.220

TABLE IV. Universal ratio mH /	 obtained from the NPRG in the
BMW approximation. Also shown are previous NPRG results [16] as
well as results obtained from (Q)MC [13,14] and ε expansion [17].

N 3 2

NPRG BMW 2.7 2.2
NPRG [16] 2.4
MC [14] 2.2(3) 2.1(3)
QMC [13] 3.3(8)
ε expansion [17] 1.64 1.67

FIG. 9. (Color online) χs(p) and χ ′′
s (ω) in the ordered phase for

N = 2 and 3. The solid line and the symbols correspond to different
values of r0 − r0c.

FIG. 10. (Color online) Log-log scale plot of χ ′′
s (ω) in the or-

dered phase for N = 2 and 3, showing the asymptotic behavior
χ ′′

s (ω) ∼ ω3 at low energies.
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FIG. 11. (Color online) Spectral function χ ′′
s (ω) for various val-

ues of N in the ordered phase.

disagrees with previous NPRG results [16] but agrees with MC
simulations of Ref. [15]. The universal ratio mH/	, shown in
Table IV, is compatible with MC estimates of Refs. [14,15].
Since in the ordered phase we must stop the flow at a finite
value kmin, we cannot calculate reliably the spectral function
χ ′′

s (ω) for frequencies ω � kmin. Although for kmin � ω � mH ,
our results are compatible with χ ′′

s (ω) ∼ ω3 (see Fig. 10),
the low-energy regime ω � 	 where the spectral function is
completely determined by the Goldstone modes is difficult to
access. In Fig. 11, we show χ ′′

s (ω) for N = 2,3,4,5,10,100.
Only for N = 2 and 3 does a Higgs resonance exist.

Finally, we show the longitudinal susceptibility χL(p) and
its spectral function χ ′′

L(ω) in Fig. 12 for N = 2 and 3. For
p → 0, the longitudinal susceptibility χL(p) diverges as 1/p as

FIG. 12. (Color online) χL(p) and χ ′′
L (ω) in the ordered phase for

N = 2 and 3. The solid line and the symbols correspond to different
values of r0 − r0c.

FIG. 13. (Color online) Log-log scale plot of χ ′′
L (ω) in the or-

dered phase for N = 2 and 3, showing the asymptotic behavior
χ ′′

L (ω) ∼ 1/ω at low energies [42].

expected for a two-dimensional system (Fig. 13) [42]. This ef-
fect is a consequence of the coupling of the longitudinal mode
to the Goldstone modes [5–8] and prevents the observation of
a well-defined Higgs resonance in χ ′′

L(ω) [4]. Nevertheless, a
broad peak, presumably due to the Higgs mode, can be seen
for ω ∼ mH when N = 2 (Fig. 12) [43]. For N = 3, the peak
has disappeared but a faint structure can still be seen.

V. CONCLUSION

We have studied the scalar and longitudinal susceptibilities
in the quantum O(N ) model using the NPRG. Comparison
with QMC simulations [12–15] and ε = 4 − (d + 1) expan-
sion [17] allows us to identify robust properties of the Higgs
mode: (i) In the ordered phase, there is a well-defined Higgs
resonance for N = 2 and 3. The spectral function χ ′′

s (ω) has
been determined both from QMC and NPRG but the precise
value of the the mass of the Higgs mode is not precisely known
(Table IV). If we take the difference between NPRG and MC
simulations of Refs. [14,15] as an estimate of the error, then
the ratio mH/	 is known within 5% for N = 2 and 20% for
N = 3. (ii) In the disordered phase, there is no Higgs-like
peak in χ ′′

s (ω) above the absorption threshold. There are two
other important properties obtained from the NPRG that have
not been studied with MC or other methods so far. (iii) The
Higgs resonance is suppressed for N � 4. (iv) For N = 2
the Higgs mode manifests itself in the longitudinal spectral
function χ ′′

L(ω) by a very broad peak.
From a more technical point of view, we have shown that

the BMW approximation [21–25] allows one to compute the
momentum dependence of correlation functions, including
four-point functions such as the scalar susceptibility. We have
also shown that the difficulties arising from the nonpositivity
of the propagator in the ordered phase can be overcome by
using a k-dependent grid which does not include small values
of the order parameter ρ.
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APPENDIX: VERTICES �
(n,m)
k IN THE LARGE-N LIMIT

In this section, we determine the effective potential Wk

and the vertices 
(2,0)
k , 

(0,2)
k , and 

(1,1)
k in the large-N limit

using the standard approach where the partition function
Zk[h] ≡ Zk[h,J = 0] is obtained from a saddle-point calcula-
tion [8,44]. We first introduce the field ρ = ϕ2 and a Lagrange
multiplier λ,

Zk[h] =
∫

D[ϕ,ρ,λ] exp

{
−

∫
x

[
1

2
(∇ϕ)2 +

(
r0

2
− h

)
ρ

+ u0

4!N
ρ2 + i

λ

2
(ϕ2 − ρ)

]

− 1

2

∫
x,x′

ϕ(x)Rk(x − x′) · ϕ(x′)
}

=
∫

D[ϕ,λ] exp

{∫
x

[
3N

2u0
(2h + iλ − r0)2

− 1

2
[(∇ϕ)2 + iλϕ2]

]

− 1

2

∫
x,x′

ϕ(x)Rk(x − x′) · ϕ(x′)
}
. (A1)

Then, we split the field ϕ into a σ field and an (N − 1)-
component field π . Integrating over the π field, we obtain the
action

Sk[σ,λ,h] =
∫

x

[
− 3N

2u0
(2h+iλ − r0)2 + 1

2
[(∇σ )2 + iλσ 2]

]

+ 1

2

∫
x,x′

σ (x)Rk(x − x′)σ (x′)

+ N−1

2
Tr ln g−1

k [λ], (A2)

where

g−1
k [x,x′; λ] = [−∇2 + iλ(x)]δ(x − x′) + Rk(x − x′) (A3)

is the inverse propagator of the field πi in the fluctuating λ

field. In the limit N → ∞, the action becomes proportional to
N (if one rescales the σ field, σ → √

Nσ ); the saddle-point
approximation becomes exact for the partition function Zk[h]
and the Legendre transform of the free energy coincides with
the action Sk [45]. This implies that the scale-dependent effec-
tive action (7), defined as the Legendre transform including the
subtraction of 	Sk[σ ], is simply equal to Sk[σ,λ,h] − 	Sk[σ ]:

k[σ,λ,h] =
∫

x

{
− 3N

2u0
(2h + iλ − r0)2 + 1

2
[(∇σ )2 + iλσ 2]

}

+ N

2
Tr ln g−1

k [λ] (A4)

(we use N − 1  N for large N ). We can eliminate the
Lagrange multiplier field using

δk[σ,λ,h]

δλ(x)

∣∣∣∣
λ=λk [σ,h]

= 0 (A5)

to obtain a scale-dependent effective action k[σ,h] ≡
k[σ,λk[σ,h],h] which is a functional of σ and h. k[σ,h] is

the starting point to compute the vertices 
(n,m)
k in the large-N

limit.
Let us first consider the effective potential for h = 0,

Uk(ρ) = − 3N

2u0
(iλk − r0)2 + iλkρ

+ N

2

∫
q

ln[q2 + iλk + Rk(q)], (A6)

where we use the notation ρ = σ 2/2. The value of λk ≡ λk(ρ)
is obtained from ∂Uk/∂λk = 0, which follows from (A5), i.e.,

−3N

u0
(iλk − r0) + ρ + N

2

∫
q

1

q2 + iλk + Rk(q)
= 0. (A7)

We deduce that

Wk(ρ) = iλk = r0 + u0ρ

3N
+ u0

6

∫
q

1

q2 + Wk(ρ) + Rk(q)
,

(A8)

which is the known result in the limit N → ∞ [44].
The vertex 

(2,0)
k can be obtained from k[σ,λ] setting h =

0. In Fourier space, the two-point vertex 
(2)
k can be written

as a 2 × 2 matrix with components 
(2)
k,σσ , 

(2)
k,σλ, 

(2)
k,λσ , and


(2)
k,λλ [8]. Inverting this matrix, one obtains the longitudinal

propagator as ((2)−1
k )σσ (p) ≡ [A,k(p) + 2ρB,k(p)]−1 from

which we deduce [see Eq. (55) in Ref. [8]

A,k(p,ρ) = p2,
(A9)

B,k(p,ρ) =
[

3N

u0
+ N

2
�k(p,ρ)

]−1

.

The momentum dependence of the transverse two-point vertex
k,T(p,ρ) = p2 + Wk(ρ) remains the bare one.

Let us now consider the vertex 
(0,2)
k (x,x′,ρ):


(0,2)
k (x,x′,ρ) = δ̄2k[σ,λk[σ,h],h]

δ̄h(x)δ̄h(x′)

∣∣∣∣
σ (z)=σ,h=0

, (A10)

where σ = √
2ρ and δ̄/δ̄h(x) denotes a total derivative

(Sec. II C 2). Using (A5), we obtain


(0,2)
k (x,x′,ρ)

= δ2k[σ,λk[σ,h],h]
δh(x)δh(x′)

∣∣∣∣
σ (z)=σ,h=0

+
∫

y

δ2k[σ,λ,h]

δh(x)δλ(y)

δλk[y; σ,h]

δh(x′)

∣∣∣∣
σ (z)=σ,λ=λk [σ,0],h=0

(A11)

and in turn


(0,2)
k (x,x′,ρ) =−12N

u0
δ(x − x′)

− i
6N

u0

δλk[x; σ,h]

δh(x′)

∣∣∣∣
σ (z)=σ,h=0

. (A12)
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To determine the last term of (A12), we take the functional
derivative δ̄/δ̄h(x′) of Eq. (A5), which gives

0 = − i
6N

u0
δ(x − x′)

+
∫

y


(2)
k,λλ(x,y,ρ)

δλk[y; σ,h]

δh(x′)

∣∣∣∣
σ (z)=σ,h=0

, (A13)

where


(2)
k,λλ(x,x′,ρ) = δ2k[σ,λ,h]

δλ(x)δλ(x′)

∣∣∣∣
σ (z)=σ,λ=λk [σ,0],h=0

. (A14)

From (A12) and (A13), we finally deduce


(0,2)
k (p,ρ) = −12N

u0
+

(
6N

u0

)2


(2)
k,λλ(p,ρ)−1, (A15)

where


(2)
k,λλ(p,ρ) = 3N

u0
+ N

2
�k(p,ρ),

(A16)

�k(p,ρ) =
∫

q
gk(q,ρ)gk(p + q,ρ)

and gk(q,ρ) = [q2 + Wk(ρ) + Rk(q)]−1 [we use iλk =
Wk(ρ)].

Following a similar approach for


(1,1)
k,1 (x,x′,ρ) = δ̄2k[σ,λk[σ,h],h]

δ̄σ (x)δ̄h(x′)

∣∣∣∣
σ (z)=σ,h=0

, (A17)

one finds


(1,1)
k,1 (p,ρ) = −6N

u0

√
2ρ

(2)
k,λλ(p,ρ)−1. (A18)
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