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The mapping between a classical length and inverse temperature as imaginary time provides a direct equivalence
between the Casimir force of a classical system in D dimensions and internal energy of a quantum system in
d = D — 1 dimensions. The scaling functions of the critical Casimir force of the classical system with periodic
boundaries thus emerge from the analysis of the symmetry related quantum critical point. We show that both
nonperturbative renormalization group and quantum Monte Carlo analysis of quantum critical points provide
quantitative estimates for the critical Casimir force in the corresponding classical model, giving access to widely
different aspect ratios for the geometry of confined systems. In light of these results, we propose protocols for the
realization of critical Casimir forces for periodic boundaries through state-of-the-art cold-atom and solid-state

experiments.
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Introduction. The behavior of a system close to a second-
order phase transition is described by universal scaling func-
tions, independent of the microscopic details of the system,
the study of which is a challenge to both experiments and
theory. In this context, a uniquely accessible universal feature
is represented by the critical Casimir force, which has been
the object of an impressive amount of experimental [1-4],
theoretical [5-7], and numerical work [8—11]. At a phase
transition, diverging order parameter fluctuations lead to a
force on confining boundaries which impose a spatial cutoff
of correlations along one spatial dimension [12], in a way
formally similar to the Casimir effect [13] in quantum elec-
trodynamics. The dependence of the force on the confinement
length and on the distance to the critical point is governed by
a universal scaling function characteristic of the bulk and the
surface universality classes, and whose sign and scale depend
crucially on the boundary conditions (BCs) [14,15].

In the realm of critical phenomena, one of the most
active subjects across the physical spectrum (from high-energy
physics, to condensed matter, to cold atoms, etc.) is the study of
quantum critical points (QCPs), i.e., zero-temperature phase
transitions of quantum systems [16]. Our understanding of
quantum many-body systems in general, and of QCPs in
particular, often relies on the quantum-to-classical mapping
provided by the functional integral description of quantum
statistical physics, by which a d-dimensional quantum system
at T = Ois represented as an effective classical systemin D =
d + 1 dimensions with periodic BCs in the extra, imaginary-
time dimension [see Figs. 1(a) and 1(b)]. This mapping under-
lies our understanding of a many zero-temperature QCPs in
relationship with thermal critical points in d 4 1 dimensions.

In this Rapid Communication we turn this paradigm on its
head, showing that the mapping to quantum transitions can pro-
vide different insight into thermal transitions. Indeed, turning
on a finite temperature close to a QCP amounts to introducing
afinite length (with periodic BCs) to the extra dimension of the
effective classical theory, so that the critical Casimir force for
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a classical system with periodic BCs appears naturally [17].
In particular, we show that the thermal energy of the quantum
system plays the same role as the critical Casimir force of the
classical system, as they are described by the same universal
scaling function [Fig. 1(c)]. This mapping allows us to turn the
considerable arsenal of field theoretic and numerical tools de-
veloped for the QCP towards the critical Casimir scaling func-
tion. We show that the nonperturbative renormalization group
(NPRG) and the quantum Monte Carlo (QMC) approach can
provide estimates for the scaling function of three-dimensional
O(N) spin models, where N is the number of components of
the order parameter, with precision and flexibility which, in
the case of the NPRG, are remarkable for theoretical methods.
Moreover, this insight highlights the fact that the thermal en-
ergy of a quantum system in the vicinity of a QCP is a universal
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FIG. 1. The central theme of this work is the correspondence
between (a) D-dimensional classical critical phenomena in confined
geometries with periodic boundary conditions (PBCs), and (b)
quantum many-body systems in d = D — 1 dimensions at finite
temperature and close to a quantum critical point. (¢) Our main result
is that the critical Casimir force of the classical system is described
by the same universal scaling function as the thermal energy of the
quantum system.
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TABLE 1. Conversion table between classical and quantum
critical systems. ¢ is the reduced temperature of the classical system
and § the nonthermal control parameter of the quantum phase
transition.

Classical D L, t & Casimir force

d+1 ,BFLC 8 ‘S!gr

Quantum Internal energy

scaling function, which is potentially accessible to a variety of
state-of-the-art experiments on complex quantum systems.
Classical versus quantum scaling functions. We consider
a D-dimensional classical system with thickness L, and
cross-sectional area L?~!, which, in the thermodynamic limit,
L,L; — oo, undergoes a second-order phase transition at a
temperature 7. The free energy can be written as [18]

Q(t,L,L,) =L 'L kpT[wex(t,L,L 1)+ wpux(®)], (1)

where t = (T — T,)/T. is the reduced temperature. Here,
wpuik denotes the free-energy density in the thermodynamic
limit, in units of kg T, and we the “excess” contribution due
to the finite volume of the system. For D < 4, hyperscaling
implies that the excess free-energy density can be written in
the scaling form [19]

oL L) = 1P S5, @
& L
where F is a universal scaling function which depends only
on the universality class of the (bulk) phase transition and the
boundary conditions. The +/— index refers to the disordered
(T > T.) and ordered (T < T,) phases, respectively. The
correlation length & = §p4|¢|”"” diverges at the transition
with a critical exponent v. In the low-temperature phase,
when the spontaneously broken symmetry is continuous, &
should be interpreted as the Josephson length, i.e., the length
separating long-wavelength (gapless) Goldstone modes from
critical fluctuations at shorter length scales [20]. The scaling
form (2) holds whenever &, L, and L, are much larger than
the Ginzburg length & (scaling limit) [16].
The Casimir force per unit area, in units of kg7, is
then [21,22]

_ 9
fe,L,L1) = LTP0(x,y) = ———L iwx(t,L,L1), (3)
oL,
where the choice of scaling variables, x = (L | /&.)"" and
y= L, /L, allows for the definition of a single universal

scaling function above and below the transition [wex =
LTPF(x.y):

x 0F(x,y) 0F(x,y)
- —y )
v 0x ay

The scale of the force is determined by 9 (0, y), the value at the
critical point. This amplitude passes through zero for y = 1
and diverges as y — oo [22]. It is thus useful, for y > 1, to
define fo =L7P ¥, such that the scaling function B (x, y) =
y~P®(x,y) has a finite limit for x = 0 and y — 0.

The scaling function ¥ being universal, it is independent
of the details of the microscopic interactions and is fully
determined by the space dimension D, the nature of the order

P(x,y) =D — DF(x,y) —

“
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parameter, the range of the interactions, and the boundary
conditions. ¥ can therefore be computed from a field theory.
For short-range interactions, the latter can be defined through
the functional integral Z = [ D[] exp(— B H) for the partition
function and the (local) Hamiltonian

L,
BH = dD‘lr”/ dri H(e,Vy9,0.9:{gi}), ©)
LI)—I 0

where the integration over ry is restricted to the area LP~!.
o(r|,r ) denotes the N-component order parameter field and
{gi} a set of coupling constants (we distinguish between
parallel and perpendicular gradient terms, V¢ and 0, ¢,
for later convenience). The dimensionless free energy, Q2 =
—InZ, where B = 1/kgT, depends on temperature through
the (usually phenomenological) coupling constants of the
classical field theory. For simplicity, we consider in the
following homogeneous and isotropic classical systems.

To any such D-dimensional field theory defined in a
volume LP~'L, with periodic boundary conditions in the
perpendicular direction, one can associate a quantum field
theory in d = D — 1 space dimensions by identifying L, =
Bhc, where ¢ is a characteristic velocity and where the
spatial coordinate r; = ct relates to an imaginary time t. The
Hamiltonian of the classical theory maps onto the (Euclidean)
action of the quantum field theory,

hp
S— / dr / dr Hp.Vo.0.0: (gD, (©6)
0 L

where the g;’s are now temperature independent. Although
BH and S are formally identical (up to a change in notations),
they describe different physical systems. The Hamiltonian H
describes a D-dimensional classical system which undergoes a
thermal phase transition in the thermodynamic limit L,L;, —
0o. The action S describes a d-dimensional quantum system
which, in the thermodynamic limit L — oo, undergoes a zero-
temperature phase transition where both the correlation length
&€ =£,+]6]7" and the time scale & = &/c diverge, and the
critical modes at the QCP have a linear dispersion, w = c|q],
corresponding to the dynamical exponent z = 1 [16]. This
transition is driven by a nonthermal parameter §, assumed
here to vanish at the QCP, which enters in S only through
the (usually phenomenological) § dependence of the coupling
constants g;.

The critical point described by the classical field theory and
the QCP described by the quantum field theory are formally
equivalent and fall in the same universality class. A finite area
LP~1! in the classical model corresponds to a finite volume
L? in the quantum model, and a finite thickness L, to a
nonzero temperature 7. The scaling analysis of the classical
model straightforwardly translates to the quantum model.
From Egs. (1) and (2), we obtain the free energy

Ld (kB T)dJrl

QO,L,T)=Q
( ) = Qbui + (o)

F(x,y), (N

where Qpux = L? €g5(8) is the zero-temperature bulk contribu-
tion, proportional to the ground-state energy density €g,. The

scaling variables are now x = 8(ﬂhc/§0,+)l/v andy = Bhc/L.
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The internal energy density € = L~?3(8R)/dB is given by

(kBT)dJrl

€(8,L,T) = €4(8) — o

v (x,y), (®)
where ¥ is the universal scaling function of the critical Casimir
force defined in Eq. (4). Comparing Eqs. (3) and (8), we see
that the Casimir force provides a measure of the difference
between €4, and €(8, L, T). Notably, taking the thermodynamic
limit, L — oo (y = 0), one can deduce from this analysis,
without prior knowledge, that the critical Casimir force of the
classical system in slab geometry is negative, given that in
this limit —¢ is proportional to the thermal energy, which is
always positive. The situation for general y is discussed further
below. A summary of the conversion from the classical to the
quantum terminology is given in Table 1.

Renormalization group calculation of the critical Casimir
force in O(N) models. Previous theoretical studies of the
critical Casimir force with periodic boundary conditions
have concentrated on the large N expansions and the €
expansion close to four dimensions. The former allows analytic
calculations over the whole phase diagram, but fails to catch
the nonmonotonous shape at finite N of the scaling function
for periodic boundary conditions [5]. In the case of the €
expansion, it typically fails in the ordered phase, and converges
poorly at the critical point [6,7]. Here, we use the NPRG
to compute the scaling function ¢ in the context of the
two-dimensional quantum O(N) model, defined by the action

hp 2 2 2 2,2
S:/ dr/dzr{w;p) | (x9) +g+u(¢)}7
0

2¢? 2 4!
©))

where ¢ is an N-component real field satisfying periodic
boundary conditions ¢(r,t + hf8) = ¢@(r,t). r and u are
temperature-independent coupling constants and c is the (bare)
velocity of the ¢ field. The QCP atr = r. (§ = r — r, for this
model) is in the universality class of the three-dimensional
classical O(N) model, and the phase transition is governed by
the three-dimensional Wilson-Fisher fixed point.

The renormalization group is a natural approach to compute
universal quantities in the (quantum) O(N) model. The
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calculation of scaling functions of the (2+1)-dimensional
Wilson-Fisher fixed point is, however, notoriously difficult
and perturbative renormalization group usually fails. In the
following, we show that the NPRG provides us with a scaling
function of the critical Casimir force which compares very
well with results obtained from Monte Carlo simulations of
three-dimensional classical spin systems (see also Ref. [23]).
We only consider the thermodynamic limit, i.e., L — 00, and
thus the scaling function ¥ (x,0).

The NPRG is an implementation of the Wilsonian RG based
on an exact equation for the Gibbs free energy (or “effective
action” in field theory terminology) for which powerful
approximation schemes have been designed [24-26]. Recently,
the NPRG has been used to study the thermodynamics of
the quantum O(N) model [27], the Higgs amplitude mode
[28,29] (in very good agreement with Quantum Monte-Carlo
simulations [30]), the quantum-to-classical crossover in the
dynamics [31], and the Kosterlitz-Thouless transition in the
two-dimensional O(2) model [32-34]. Our results, which are
exact in the limit N — oo, are obtained from a derivative
expansion of the effective action to second order and improves
on the approach of Ref. [27] (see the Supplemental Material
for more details [35]).

Figure 2 shows the Casimir scaling function ¢ obtained
from the two-dimensional quantum O(N) model within the
NPRG approach for the three-dimensional Ising (N = 1),
XY (N =2), and Heisenberg (N = 3) universality classes,
together with data from Monte Carlo simulations of the
three-dimensional classical spin systems [8,22,36,37]. In all
cases we find very good agreement between the NPRG and
simulation results. In particular, the nonmonotonous form for
¥ (x,0) is well reproduced and the amplitude and position of
the minimum of the scaling function are accurately predicted,
with some small differences between NPRG and simulations
occurring in the region around x ~ —1, with the former
showing a more pronounced minimum for N = 1 and N = 2.
Note that in Ref. [37], the overall scale of the N = 3 scaling
function was not determined. We have rescaled the MC data so
that they satisfy the known asymptotic value when x — —o0,
—2(N — 1)¢(3)/2m, corresponding to the excess free energy
of bosons with linear dispersion [27]; the rescaled function
compares well with the NPRG result.

FIG. 2. Casimir scaling function ¢ (x,0) for the three-dimensional O(N) universality class from the NPRG approach to the two-dimensional
quantum O(N) model (solid line), compared to classical Monte Carlo simulations of the corresponding three-dimensional spin models (symbols).
The horizontal dashed line shows the (exact) limit —2(N — 1)¢(3)/2x. Left panel: Ising (N = 1) universality class. Monte Carlo simulations
are from Ref. [8] (blue diamonds), Ref. [22] (green squares), and Ref. [36] (red circles). Middle panel: XY universality class (N = 2). The
Monte Carlo data are from Ref. [8]. Right panel: Heisenberg universality class (N = 3). The Monte Carlo data [37] have been rescaled so as
to satisfy the correct asymptotic value for x — —oo (see text); the bare data are shown in the inset.
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TABLE II. Universal Casimir amplitude ©(0,0)/2.

N 1 2 3

NPRG
Monte Carlo [8]

—0.1527
—0.1520(2)

—0.3006
—0.2993(7)

—0.4472

We show in Table II the NPRG and Monte Carlo estimates
for the universal Casimir amplitude 9(0,0)/2. Again, the
NPRG results are in very good agreement with MC simu-
lations, with a relative difference below 1% [38].

Finite-size scaling and aspect ratio. The method of choice
for a fully quantitative study of a QCP is QMC. It provides
the flexibility to vary the spatial as well as the time dimension,
allowing for the evolution from slab to column geometry in
the corresponding classical system through the variation of the
ratio y = Bhc/L. As a consequence, the standard finite-size
and finite-temperature scaling analysis of the numerical results
close to the quantum critical point can be recast in the
language of critical Casimir forces in columnar geometry [17].
Indeed, the finite nature of the simulation cell implies that
the quantum limit, 8 — o0, corresponds to column geometry
for the corresponding classical system. With continuous-time
QMC [39], the imaginary-time axis becomes a continuous
periodic dimension of length Shc, as in the field theoretic
approach, so that y can be easily tuned to any value.
Furthermore, the internal energy € = L~ (H), where H is the
Hamiltonian of the quantum system, is an easily accessible
observable, whereas the numerical methods for calculating
the Casimir force in classical systems are computationally
intensive [8,10,22,40]. Following Eq. (8), one can fit the
numerical calculation for energy density €(§,L,T) to a suitable
scaling function (this kind of fit has been used to compute &
in the limit y > 1 for quantum systems [41,42]).

We have studied the quantum critical point of the transverse-
field Ising model in two dimensions, H=-J Z(z’,j) 656} —
h)"; 6", which has a QCP at h = h, (§ =h — h, here)
between a ferromagnetic and a paramagnetic ground state.
We have used a cluster QMC algorithm [43] to compute the
energy density, while the critical velocity c is extracted from
the excitation spectrum at the QCP [44] (see the Supplemental
Material [35]). Numerical results for the critical Casimir
amplitude estimated from QMC over the range 0 < y < 00
are shown in Fig. 3 and compared with classical simulation
results for the three-dimensional Ising model from Ref. [22].
Excellent agreement is found, confirming the equivalence of
these two critical phenomena away from the limit of slab
geometry. There is a sign change at y =1: For y « 1,
—19 probes the (positive-definite) thermal energy density,
whereas for y >> 1 it probes the finite-size corrections to the
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FIG. 3. Evolution of the Casimir amplitude extracted using QMC
from the quantum Ising model as a function of the aspect ratio y. We
show 9(0,y)/2 for y < 1 and §(0,y) for y > 1. Red squares are
classical Monte Carlo (MC) data from Ref. [22].

ground-state energy density, which are usually negative for
quantum systems.

Conclusion. The finite-temperature equation of state for a
quantum critical system in dimension d can in principle be
measured in state-of-the-art experiments on quantum critical
phenomena, including trapped ions [45] and quantum Ising
magnets in a transverse field [46] for N = 1, ultracold Bose
gases loaded in optical lattices for N = 2 [47], and quantum
magnets under pressure for N = 2and N = 3 [48]. The critical
Casimir force for a classical system in dimension D with a
thermal critical point could hence be experimentally accessed,
opening the door to a different class of critical Casimir force
experiments in which the quantum system becomes a simulator
for confinement effects on critical fluctuations at a classical
critical point. Conversely, the interpretation of the thermal
energy as a critical Casimir force challenges the experiments
on quantum critical phenomena to measure the corresponding
universal scaling function. This can be achieved in the solid-
state context via temperature integration of the specific heat,
and in the atomic physics context by direct measurement of
spin-spin or density-density correlation functions for the po-
tential part, and by time-of-flight measurement for the kinetic
part. The above considerations exhibit the as yet unexplored
potential of the quantum-to-classical correspondence in the
context of critical phenomena.
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