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Using the nonperturbative renormalization group, we study the existence of bound states in the
symmetry-broken phase of the scalar ϕ4 theory in all dimensions between two and four and as a function of
the temperature. The accurate description of the momentum dependence of the two-point function, required
to get the spectrum of the theory, is provided by means of the Blaizot–Méndez-Galain–Wschebor
approximation scheme. We confirm the existence of a bound state in dimension three, with a mass within
1% of previous Monte-Carlo and numerical diagonalization values.
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I. INTRODUCTION

The low-energy physics of a many-body system is
governed by the first excitations above its ground state.
Often, these excitations are not directly given by the
(dressed) elementary constituents of the system, but are
instead complicated objects. Bound states represent an
important class of such excitations. Superconductivity is
probably the best known example [1], although not the only
one of experimental interest: low dimensional quantum
systems, such as 1d cuprate ladder materials, or the 2d
magnetic system SrCu2ðBO3Þ2, are known to also present
bound states, whose modes appear in their measured
spectra [2–6]. Beyond the realm of condensed matter,
bound states are also very important in the theory of
nuclear forces [7,8], as well as in quantum chemistry [9].
Of particular interest are bound states emerging in

strongly correlated systems, where they are less understood
and difficult to characterize using standard perturbative
techniques. Examples of such systems arise in the theory of
the strong nuclear interactions, QCD [10,11], as well as in
the spectrum of quantum excitations in strongly correlated
electron systems [12–15]. There is no need to stress that the
study of this class of subjects is ripe for the development of
new approximation methods, capable of dealing with the
complexities that emanate from strong correlations. In this
regard, renormalization group methods have already shown
to be extremely well adapted to this endeavor, given their
focus on scale dependent properties, and their proven
abilities to deal with strong correlations.
The scalar ϕ4 field theory probably represents the

simplest example of a strongly correlated system, exhibit-
ing long-range order and a diverging correlation length at
the critical point. Near this point, it belongs to the Ising
universality class, and a lot of effort has been put into the
understanding of its properties by a myriad of methods,
including Monte-Carlo simulations, high order perturbative

expansion [16–18] and the conformal bootstrap [19–23].
The complex yet manageable behavior of ϕ4 theory is thus
ideally suited for purposes of benchmarking new approxi-
mation methods [24,25], as well as for revisiting a subject
of intrinsic interest.
In two spatial dimensions, or, equivalently, in the 1d

quantum case at zero temperature [15], the integrability of
the Ising model, and thus of its universality class close to
criticality, allows for the complete determination of the
bound state spectrum [26,27]. These exact results stem
from the conformal invariance of the theory at criticality. In
the language of the classical two-dimensional model, this
bound state exists in the presence of a small magnetic field,
and when the temperature is exactly the critical temper-
ature. The observed ratio between the mass of the first
bound state and of the elementary excitation is m1=m0 ¼
ð1þ ffiffiffi

5
p Þ=2 (golden ratio), which has been experimentally

confirmed [28] in the quasi-1d quantum Ising ferromagnet
CoNb2O6, by means of inelastic neutron scattering. Six
other bound states are known to exist in this case with only
two that are below the mass of the threshold 2m0 of the
multiparticle continuum.
In the case of the three dimensional ϕ4 model, the

presence of a bound state in the symmetry broken phase is
by now a well-established fact. A classical argument at
T ¼ 0 shows the existence of a bound state for the Ising
model [29], although this is of course a nonuniversal result.
For the ϕ4 theory, a bound state with a mass ratio M=m
around 1.8 was first detected by Monte Carlo simulations
[29,30] of the Ising model at temperatures lower than Tc,
but still within the scaling regime, and thus expected to be
universal. This prompted the use of resummed perturbative
calculations by means of a Bethe-Salpether equation, where
the leading order yields results compatible with
Monte Carlo values [31,32]. However, the next-to-leading
order result leads to an unphysical conclusion M=m < 0,
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indicating a strongly nonperturbative behavior for this
quantity. Alternatively, this bound state can also be detected
studying the quantum 2d Ising model at zero temperature,
as was performed using high-order perturbative continuous
unitary transformations [33]. More recently, Nishiyama
[34] found M=m ¼ 1.84ð1Þ using numerical diagonaliza-
tion methods.
For the three dimensional ϕ4 model then, the observed

bound state appears to be outside of the standard perturba-
tive renormalization group regime. It is interesting however
to see whether other, nonperturbative, methods based on the
RG are able to detect its presence. One of the main
difficulties is that a nontrivial (and in particular, nonana-
lytic) description of the momentum dependence of the
correlation functions of the system is needed to detect
bound states, as is discussed below.
Some years ago, a new approximation scheme of the

nonperturbative renormalization group (NPRG, also known
sometimes as the functional or exact RG), the Blaizot–
Méndez-Galain–Wschebor (BMW) approximation, has
been shown to give accurate momentum dependent results
for scalar field theories [25,35]. In this work, we use this
approximation to compute the ϕ4 bound state mass within
the NPRG, for spatial dimensions between d ¼ 2 and
d ¼ 4. This not only shows the strength of this multipur-
pose method, but also allows us to study in a novel way the
temperature-dependence of this bound state, even in the
nonuniversal region of the model.
This paper is organized as follows: in Sec. II, we discuss

how to check for bound states using the momentum
dependence of the two-point correlation function of the
system, and Sec. III briefly presents the approximation
scheme used for obtaining the full momentum dependence
of this function. Section IV discusses the numerical
implementation, as well as the numerical analytic continu-
ation procedure, before presenting our main results in
Sec. V. Finally, we present our conclusions in Sec. VI.

II. SIGNATURE OF A BOUND STATE
IN THE SPECTRAL FUNCTION

For concreteness, we use the language of classical
equilibrium statistical mechanics, but the case of d − 1
quantum statistical systems at zero temperature corre-
sponds to a trivial renaming of the fields. The microscopic
Euclidean action of the model is written in the well-known
Ginzburg-Landau form [7]

S½φ� ¼
Z

ddx

�
1

2
ð∇φðxÞÞ2 þ r0

2
φ2ðxÞ þ u0

4!
φ4ðxÞ

�
: ð1Þ

When performing Monte Carlo simulations of this
system on a lattice, bound states can be most easily detected
by studying the spatial behavior of the two-point connected
correlation function. In the symmetry broken phase, one
expects correlations decaying exponentially with distance

hφðxÞφð0Þic ∼
x→∞

Ae−mx; ð2Þ

withm ¼ ξ−1 the inverse correlation length, usually termed
the “mass” in analogy with quantum field theory. For a
theory with a nontrivial spectrum, subleading exponentials
are expected as well:

hφðxÞφð0Þic ∼
x→∞

A0e−mx þ A1e−Mx þ � � � ð3Þ

which are associated with bound states of the theory, in that
they give the subleading correlation lengths. While this is
the standard technique for finding bound states when using
simulations [29], one can alternatively study the momen-
tum-dependent spectral function, defined by the Fourier
transform

GðpÞ ¼
Z

ddxhφðxÞφð0Þice−ipx: ð4Þ

The presence of subleading exponential decay terms can
also be seen in the analytic continuation of GðpÞ to
complex values of p. Indeed, GðpÞ behaves in the infrared
limit p → 0 as

GðpÞ ∼
p→0

A0
0

p2 þm2
þ A0

1

p2 þM2
þ � � � ð5Þ

This implies that the function Gðω ¼ ipÞ has poles at the
values of the masses of the system, with the first mass
associated with the correlation length and the following
with bound states or possible many-particle states.
It can be shown [31,32] that at any (finite) order in a

perturbative expansion around a free theory, the ratio of the
correlation length to any other length scale must be an
integer, forbidding thus the description of bound states.
This issue can be partially solved by performing infinite-
order resummations in some particular channel, but then
this expansion seems to be badly behaved [31].
Not being able to see a non-integer M=m ratio is a

problem shared by the simplest approximation schemes
within the NPRG, such as the well-known local potential
approximation (LPA), or its higher order generalization
dubbed the derivative expansion (DE) [36,37]. This
approximation amounts to a small momentum expansion
of the (vertex) correlation functions. While it has proven to
be very accurate in the low momentum regime, e.g. for the
determination of critical exponents [37–42], it is not
reliable for finite momentum properties and is therefore
unable to describe bound states.
As already mentioned in the Introduction, the BMW

scheme [35] takes into account the full, nontrivial momen-
tum dependency of the correlation functions. This method
has been successfully applied to OðNÞ scalar field models
[25,43], showing excellent results for universal properties
such as critical exponents and momentum-dependent
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scaling functions. The BMW method has also found
applications beyond the confines of equilibrium statistical
mechanics [44–46], showing its flexibility to deal with
highly nontrivial momentum dependent quantities. It thus
seems very natural to apply this scheme to the problem of
bound states. We present the BMW scheme and its
application to ϕ4 theory in the following section.

III. NONTRIVIAL MOMENTUM DEPENDENCE
WITHIN THE NPRG: THE BMW

APPROXIMATION

We start with a brief outline of the NPRG formalism for
the case of a scalar field theory [37,47–50]. The NPRG
strategy is to build a family of theories indexed by a
momentum scale k, such that fluctuations are smoothly
taken into account as k is lowered from the microscopic
scale Λ (e.g. the inverse lattice spacing) down to 0. In
practice, this is achieved by adding to the original
Euclidean action S a “mass-like” term of the form

ΔSk½φ� ¼ 1
2

R
q Rkðq2ÞφðqÞφð−qÞ (here

R
q ≡

R ddq
ð2πÞd). The

cutoff function Rkðq2Þ is chosen such that Rkðq2Þ ∼ k2

for q≲ k, which effectively suppresses the modes
φðq≲ kÞ, and such that it (almost) vanishes for q ≳ k,
leaving the modes φðq ≳ kÞ unaffected. One then defines a
scale-dependent partition function

Zk½J� ¼
Z

Dφe−S½φ�−ΔSk½φ�þ
R

Jφ; ð6Þ

and a scale-dependent effective action Γk½ϕ� through a
(modified) Legendre transform [37],

Γk½ϕ�þ logZk½J�¼
Z
q
JðqÞϕð−qÞ−1

2

Z
q
Rkðq2ÞϕðqÞϕð−qÞ;

ð7Þ

with ϕ ¼ δ lnZk=δJ the mean value of the field. The
variation of the effective action Γk½ϕ� as k changes is given
by the Wetterich equation [47]:

∂kΓk½ϕ� ¼
1

2

Z
q
∂kRkðq2ÞGk½q;ϕ�; ð8Þ

where Gk½q;ϕ� ¼ ðΓð2Þ
k ½q;ϕ� þ Rkðq2ÞÞ−1, and Γð2Þ

k ½q;ϕ� is
the second functional derivative of Γk½ϕ� w.r.t. ϕ.
With the definitions above, it is easy to show that for

k ¼ Λ, all fluctuations are frozen by the ΔSk term and thus
Γk¼Λ½ϕ� ¼ S½ϕ�. This is the initial condition of the flow
equation (8). On the other hand, when k ¼ 0, ΔSk¼0 ≡ 0

because Rk¼0ðq2Þ vanishes identically and Γk¼0½ϕ� is the
Gibbs free energy of the original model that we aim to
compute.

Differentiating s times Eq. (8) with respect to the field
ϕðqÞ yields the flow equation for the vertex function

ΓðsÞ
k ½q1;…; qs;ϕ�. Thus, for instance, the flow equation

for Γð2Þ evaluated in a constant field configuration ϕ reads:

∂kΓ
ð2Þ
k ðp;ϕÞ ¼

Z
q
∂kRkðq2ÞG2

kðqÞ½Γð3Þ
k ðp;−p − q; qÞ

× Gkðpþ qÞΓð3Þ
k ð−p; pþ q;−qÞ

− 1
2
Γð4Þ
k ðp;−p; q;−qÞ�:

ð9Þ

(Here we have omitted the ϕ dependence of the functions

Gk and Γ
ðnÞ
k in the right-hand side to alleviate the notation).

Note that the flow equation for ΓðsÞ
k ðq1;…; qs;ϕÞ involves

Γðsþ1Þ
k and Γðsþ2Þ

k , leading to an infinite hierarchy of coupled
equations.
The flow equations (8) and (9) are exact, but solving

them requires in general approximations. It is precisely one
of the virtues of the NPRG to suggest approximation
schemes that are not easily derived in other, more conven-
tional approaches. In particular, one can develop approxi-
mation schemes for the effective action itself, that is, which
apply to the entire set of correlation functions. The BMW
approximation [35] is such a scheme. It relies on two
observations. First, the presence of the cutoff function

Rkðq2Þ guarantees the smoothness of the ΓðsÞ
k ’s for k > 0

and limits the internal momentum q in equations such as (9)
to q≲ k. In line with this observation, one neglects the
q-dependence of the vertex functions in the r.h.s. of the
flow equations [e.g., in Γð3Þ and Γð4Þ in Eq. (9)], while
keeping the full dependence on the external momenta pi.
The second observation is that, for uniform fields,

Γðsþ1Þ
k ðp1;…; ps; 0;ϕÞ ¼ ∂ϕΓ

ðsÞ
k ðp1;…; ps;ϕÞ, which ena-

bles one to close the hierarchy of NPRG equations.
At the leading order of the BMW scheme, one keeps the

nontrivial momentum dependence of the two-point func-
tion and implements the approximations above on Eq. (9),
which becomes:

k∂kΓ
ð2Þ
k ðp;ϕÞ ¼ J3ðp;ϕÞð∂ϕΓ

ð2Þ
k Þ2 − 1

2
J2ð0;ϕÞ∂2

ϕΓ
ð2Þ
k

ð10Þ

with

Jnðp;ϕÞ≡
Z
q
k∂kRkðq2ÞGn−1

k ðq;ϕÞGkðpþ q;ϕÞ: ð11Þ

The approximation can be systematically improved: The
order s consists of keeping the full momentum dependence

of Γð2Þ
k ;…;ΓðsÞ

k and truncating that of Γðsþ1Þ
k and Γðsþ2Þ

k
along the same lines as those leading to Eq. (10) for the case
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s ¼ 2, with a corresponding increase in the numerical
complexity.
In order to treat efficiently the low (including zero)

momentum sector, we work with dimensionless and renor-
malized quantities. Thus, we measure all momenta in units
of k: ~p ¼ p=k. We also rescale ρ≡ 1

2
ϕ2 according to ~ρ ¼

k2−dZkK−1
d ρ (with the constant Kd ¼ ð2πÞ−dSd=d, and Sd

being the volume of the unit sphere), and set ~Γð2Þ
k ð ~p; ~ρÞ ¼

k−2Z−1
k Γð2Þ

k ðp; ρÞ. The running anomalous dimension ηk is
defined by k∂kZk ¼ −ηkZk, so that at criticality ηk→0 → η,
with η the anomalous dimension. Thus, at a fixed point
Zk ∼ k−η. The absolute normalization of Zk is fixed by

choosing a point ð ~p�; ~ρ�Þ where ∂ ~p2 ~Γð2Þ
k j ~p�;~ρ� ¼ 1. Here, we

have chosen ~p� ¼ 0 and ~ρ� ¼ ~ρ0;k, where ~ρ0;k is the
k-dependent running minimum of the potential. Then,

the flow equation of ~Γð2Þ
k ð ~p; ~ρÞ follows trivially from

Eq.([35]).
It is actually more accurate to disentangle the potential

part of ~Γð2Þ
k ð ~p; ~ρÞ from the momentum part and to

solve independently the flows of these two quantities

[25]. We thus solve two equations: one for ~Ykð ~p; ~ρÞ≡
~p−2½ ~Γð2Þ

k ð ~p; ~ρÞ − ~Γð2Þ
k ð0; ~ρÞ� − 1 and one for the derivative

of the dimensionless effective potential ~Wkð~ρÞ ¼ ∂ ~ρ
~Vkð~ρÞ,

with ~Vkð~ρÞ ¼ K−1
d k−dVkðρÞ. Note that ~Γð2Þ

k ð0; ~ρÞ ¼
~Wkð~ρÞ þ 2~ρ ~Wk

0ð~ρÞ. Here and below, primes denote deriva-
tive w.r.t. ~ρ, or, in the case of dimensionful variables, w.r.t.
ρ. These two equations read (dropping the k index and the ~ρ
and ~p dependences to alleviate the notation):

∂t
~Y ¼ ηkð1þ ~YÞ þ ~p∂ ~p

~Y − ð2 − d − ηkÞ~ρ ~Y 0

þ 2~ρ ~p−2½ð ~p2 ~Y 0 þ ~λkÞ2 ~J3ð ~p; ~ρÞ − ~λ2k ~J3ð0; ~ρÞ�
− ~J2ð0; ~ρÞð ~Y 0=2þ ~ρ ~Y 00Þ; ð12Þ

∂t
~W ¼ðηk − 2Þ ~W þ ðd − 2þ ηkÞ~ρ ~W0 þ 1

2
~J1

0ð0; ~ρÞ: ð13Þ

Here, the renormalization “time” t is defined by
t¼ logk=Λ, ∂t ¼ k∂k, ~Jnð ~p; ~ρÞ¼K−1

d Zn−1
k k2n−d−2Jnðp;ρÞ

and ~λkð~ρÞ ¼ 3 ~Wk
0ð~ρÞ þ 2~ρ ~Wk

00ð~ρÞ. The running anomalous
dimension ηk is obtained by setting ~Ykð ~p�; ~ρ�Þ ¼ 0 in
Eq. (12) and taking a time derivative, noting that
∂t ~ρ0;k ¼ −∂t

~Wkð~ρÞj~ρ0;k= ~W0
kð~ρ0;kÞ.

At the end of the numerical flow, the two-point vertex
function Γð2Þðp; ρÞ can be reconstructed from ~Yk and ~Wk:

Γð2Þðp;ρÞ¼ lim
k→0

Zkk2½ ~p2ð1þ ~Ykð ~p; ~ρÞÞþ ~Wkð~ρÞþ2~ρ ~W0
kð~ρÞ�:

The flow equations (12) and (13) can be solved
using standard numerical techniques, see Sec. IV.
Crucially for our purposes, the obtained k → 0 values

for the Γð2ÞðpÞ ¼ GðpÞ−1 function must then be extended
to the whole complex plane. This is not a completely well-
defined mathematical operation, given that we are extend-
ing a discrete set of numerical values to the whole plane.
Nonetheless, this type of extension is often used e.g. in
systems studied using quantum Monte Carlo methods
[51,52], and are known to yield useful results. Here, we
perform this analytic continuation from Padé approximants
of our results, see the next section.
Note that if we neglect nontrivial momentum depend-

ence and set ~Y ¼ 0, in the ordered phase Γð2Þðp; ρ ¼ ρ0Þ
cancels only for p ¼ �iΔ,

Δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρ0W0

k¼0ðρ0Þ
Zk¼0

s
: ð14Þ

In this case, Δ is the mass (the inverse correlation length)
and there are no bound states. Within the BMW approxi-
mation, this is no longer true and bound states can exist.
The actual mass m of the elementary excitation, that is, the
leading correlation length, is close to Δ. It is therefore
useful to retain Δ as a relevant energy scale, which needs
not to be extracted from an analytic continuation.
It should be mentioned that, recently, an alternative

formulation of the NPRG capable of dealing with the
analytic continuation of spectral functions has been pro-
posed in a slightly different context [53–55]. In this
approach, the analytic continuation is performed at the
level of the flow equations of the NPRG, so that one ends
up with a flow of complex quantities. This is a very
promising approach, which has so far only been applied
together with derivative expansion-like approximations,
resulting in a less accurate momentum description of the
theory than our approach. Ideally, these ideas could be
implemented together with a BMW type of approximation
in the near future.

IV. NUMERICAL PROCEDURE

In this section, we give the key points of the numerical
integration of the flow equations (12), (13), and then we
detail the analytic continuation used to extract the pole of
the correlation function, where, as shown below, subtle
issues may arise.

A. Flow integration

The integration of the flow equations is based on well-
established numerical analysis methods. The (renormaliza-
tion) time evolution is done through explicit Euler
integration scheme with a time step dt ¼ −10−4. The
momentum dependence of ~Ykð ~p; ~ρÞ is studied on the
interval ~p ∈ ½− ~pmax; ~pmax� with ~pmax ¼ 10 and we use a
Chebyshev pseudo-spectral approximation of this function
with a variable number of polynomials ranging from
20 to 50. The field-dependence of ~Ykð ~p; ~ρÞ is obtained
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by discretizing the ~ρ-space on a finite and regular grid ~ρ ∈
½0; ~ρmax� with ~ρmax comprised between 10 and 14. The
lattice spacing of the ~ρ grid is d~ρ ¼ 0.1.
We choose an exponential regulator,

Rkðq2Þ ¼ α
Zkq2

expðq2=k2Þ − 1
; ð15Þ

where α is an arbitrary parameter that is varied to study the
sensitivity of our results with the choice of regulator. Since
the integrals over the momenta involved in the RG flows,
Eq. (11), are all exponentially cutoff by the (derivative of
the) regulator, we restrict their range to j ~pj ≤ 4. These
integrals are then computed using a Gauss-Legendre
approximation with 40 points. A good numerical accuracy
of the integrals is mandatory to obtain converged results,
especially for dimensions d < 3.
Further difficulties arise when studying the ordered

phase. First of all, in this phase, ρ0;k, which is the minimum
of the running potential, goes to a constant value ρ0 > 0 as
k goes to zero, since it is half the square of the spontaneous
magnetization. Since ~ρ0;k ∼ ρ0;k=Zkkd−2, this means that
~ρ0;k diverges as k goes to zero. In practice, starting close to
criticality, we observe that in the first stage of the flow ~ρ0;k
evolves toward its fixed point value. Then, when k is of the
order of the inverse of the correlation length ξ, it starts
diverging which means that ρ0;k has almost converged to its
final value. Hence, when the flow leaves the critical regime,
we switch to the flow of ~WkðρÞ and ~Ykð ~p; ρÞ (instead of ~ρ)
while keeping the same number of points on a dimensionful
grid in ρ. This allows ρ0;k to remain inside the grid as k goes
to zero.
The second difficulty is numerical. When k → 0, the

inner part of the potential, ρ < ρ0, becomes flat because of
the convexity of the effective potential V ¼ Vk¼0. The
convexity of V is reproduced within the BMW approxi-
mation and corresponds to the approach of the pole of the
propagator at vanishing momentum when k → 0. Thus,
Gkðp ¼ 0; ρ < ρ0;kÞ ¼ ½Rkðp ¼ 0Þ þWkðρÞ�−1 becomes
very large at small k which causes numerical instabilities.
The instabilities arise at small ρ since WkðρÞ is an
increasing function of ρ. Since the physics we are interested
in corresponds to ρ ¼ ρ0 (there is neither external magnetic
field nor phase coexistence), we eliminate the source of
numerical instabilities by eliminating the small values of ρ
from the grid, that is, the values for which WkðρÞ is “too
negative.” We therefore replace the grid ρ ∈ ½0; ρmax� by a
k-dependent grid ρ ∈ ½ρminðkÞ; ρmax� which allows us to
continue the flow to smaller values of k. We expect that this
supplementary approximation has a small impact on the
final results. However, a difficulty remains for small k:
ρminðkÞ becomes close to ρ0;k and there are no longer
enough points in the ρ-grid on the left of ρ0;k to compute the
derivatives of the potential at this point. The flow must then

be stopped and the smallest value of k we have been able to
reach is typically kmin ≃ 0.1Δ.
The function Γð2Þðp; ρ0Þ is finally obtained using the

approximation:

Γð2Þ
k¼0ðpÞ≃ Γð2Þ

k¼p= ~pmax
ðpÞ; ð16Þ

k ¼ p= ~pmax being the smallest value of k for which p=k is
still in the dimensionless grid ½0; ~pmax�. This approximation
is justified by the fact that p acts as an effective infrared

cutoff in the flow of Γð2Þ
k ðpÞ that therefore effectively stops

for k ≪ p. Thus, stopping the flow of Γð2Þ
k ðp; ρ0;kÞ at k ≪ p

or at k ¼ 0 should yield almost the same result. We have
checked the validity of the approximation (16) by varying
~pmax and observing that it is indeed almost insensitive to
~pmax when it is of order 10.

B. Analytic continuation

Let us now detail the Padé approximation procedure
used to obtain the spectral function Gðω ¼ ip − 0þÞ ¼
Gk¼0ðip − 0þ; ρ0Þ. First, we compute the propagator GðpÞ
for N momentum values pi evenly spaced in a window
½ωmin;ωmax�. Typically, N ∼ 30 − 50, ωmin ∼ Δ and
ωmax ∼ 10Δ. We then construct a ½N − 2=N� Padé approx-
imant [51,52] F, even in p, that satisfies FðpiÞ ¼ GðpiÞ for
all i. Once F is known, we evaluate Im½Fðω ¼ ip − 0þÞ� as
an approximation of Im½GðωÞ� that shows peaks where
GðipÞ has poles.
To check the validity of this method, we vary the

parameters N, ωmin and ωmax and compare about 20
different approximants, see Fig. 1. While they all (almost)
coincide for real values of p, they vary a lot more when
analytically continued, a signature of the fragility of the
Padé procedure with respect to numerical errors.
All approximants show a remarkable agreement for the

pole at ω=Δ close to 1, corresponding to the massm, that is,
the inverse correlation length of the system, see Fig. 1
where all curves are superimposed at this pole. Among the
approximants, we eliminate those that exhibit unphysical
spurious behavior, such as an additional pole at an energy
ω ≪ Δ, or a splitting of the mass pole into two peaks of
energy around m. Furthermore, we eliminate approximants
which present a mass more than 1% different from the
others. Depending on the dimension, between one fourth
(d ¼ 3) and one half (d ¼ 2) of the Padé approximants are
rejected this way.
We observe that all the remaining approximants present a

single second pole at an energy M > m, the value of M
varying slightly from approximant to approximant (from
2% in d ¼ 3 to less than 10% for d ≲ 2.6). Depending on
the dimension, we find two possibilities. In the first case,
M ≳ 2m, and the pole corresponds to two independent
single-particle excitations implying that there are no bound
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states. In the second case m < M < 2m and a bound state
exists with mass M.
As an additional check of the accuracy of the analytic

continuation, we have verified that the position of the poles
varies smoothly with the dimensionality of the system.

V. RESULTS

Let us start by discussing the results obtained in d ¼ 3,
where a bound state is clearly present in the broken
symmetry phase, and absent in the symmetric phase.
The corresponding values of M=m are displayed in
Fig. 2 as a function of r0 − r0c , where r0c is the value of
the parameter r0 which makes the model critical. For a
given value of the reduced temperature (which we identify
with r0 − r0c), the value of the ratio M=m varies slightly
between different approximants, which is origin of the error
bars shown in the figure. To test the accuracy of the method,
we have also studied the variation of the results with the

parameter α in front of the regulator function (15). In all
cases this variation turns out to be much smaller than the
error bars stemming from the Padé procedure.
Both in the universal regime r0 ≃ r0c , as well as for larger

values of the reduced temperature within the nonuniversal
regime, the ratio does not appear tovary significantlywith the
reduced temperature. Using a conservative error bar, we find
M=m ¼ 1.82ð2Þ, in agreementwith previous results: 1.83(3)
for Monte Carlo [30], 1.828(3) for the first order approxi-
mation of the Bethe-Salpeter equation [32], 1.84(3) for the
results of perturbative continuous unitary transformations,
and 1.84(1) for the most recent and accurate results from
numerical diagonalization methods [34].
Next, we study the evolution of value of theM=m ratio at

criticality as a function of the dimension, for 2 ≤ d ≤ 4.
The ratio is a smooth function of the dimension, as shown
in Fig. 3. It is found that there exists an upper and lower

FIG. 2. Values of the mass ratio M=m for several values of the
reduced temperature, corresponding to different values of r0 − r0c
measuring the distance to criticality. For each temperature, the
error bar indicates the extremal possible values obtained from the
Padé approximants.

FIG. 3. Values of the mass ratio M=m in the critical regime for
various dimensions. For each dimension, the error bar indicates
the extremal possible values obtained from the Padé approxim-
ants. The shaded areas denotes the range of dimensions for which
it is certain there are no bound states.

FIG. 1. Comparison of three different Padé approximants of
(top) Γð2ÞðpÞ, (bottom) Im½GðωÞ�. Top: we show (in arbitrary
units) the vertex Γð2ÞðpÞ (full line), obtained from the numerical
integration of the flow, as well as its fit by three different
approximants (symbols). Bottom: the spectral functions
Im½GðωÞ� (in arbitrary units) obtained from the analytic continu-
ation of these approximants. The three approximants show two
poles, one at a mass m≃ 0.75Δ whose position is very stable
among the approximants, the other at a mass M ≃ 1.35 − 1.4Δ
whose position depends slightly on the approximants.

ROSE, BENITEZ, LÉONARD, and DELAMOTTE PHYSICAL REVIEW D 93, 125018 (2016)

125018-6



dimension, d−r ∼ 2.2 − 2.3 and dþr ∼ 3.2 − 3.3, such that
for d−r < d < dþr there is a bound state, whereas for
dimensions outside this interval, there is none. This is
consistent with the fact that there are no bound states in
d ¼ 2 in the absence of a magnetic field in the critical
regime [56], although they might still be present deeper in
the broken symmetry regime [57–59]. Furthermore, our
results show that no bound state is to be expected in
dimension d ¼ 4.
We have also studied the O(2)-symmetric model in

d ¼ 3 along the same lines. Our results show the absence
of a bound state in this case.

VI. CONCLUSIONS

In this work we studied the existence of a bound state in
the ϕ4 scalar theory in all dimensions between d ¼ 2 and
d ¼ 4, and for a range of temperatures below the critical
point. For d ¼ 3, our results are within 1% of the previous
Monte Carlo and numerical diagonalization values. We use
the BMW approximation of the nonperturbative renorm-
alization group, which allows for the determination of the
full-momentum dependence of the spectral function both in
the universal and nonuniversal regimes. These results show
once again the power of the BMW approximation for

dealing with nontrivial physics at arbitrary momentum
scales, even in cases where the quantities of interest require
to perform analytic continuations of numerical data.
Many generalizations of the present work can be

envisaged. First, as the NPRG allows for the computation
of nonuniversal quantities, studying the presence of bound
states for lattice models is a priori possible, since this only
requires us to take into account the lattice dispersion
relation as was already done for the derivative expansion
[60,61]. Second, the dependence of the bound state
spectrum on an external magnetic field can be naturally
studied within our formalism, since the ρ-dependence of
Γð2Þðp; ρÞ encodes the influence of the external field on the
spectral function. Finally, a BMW-type of approximation
can also be used to detect bound states in more complex
systems, such as out-of-equilibrium [46], disordered
[62,63] and quantum systems [44,45], for which much
less is known via simulations.
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