Higgs mode and conductivity in the vicinity of a quantum critical point

Félix Rose and Nicolas Dupuis

Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie

Quantum phase transitions and the O(N) model

Quantum phase transition (QPT): a qualitative change in the ground stade as an external parameter is varied.

$$\hat{H} = t \sum_{\langle i,j \rangle} (\hat{b}_i^{\dagger} \hat{b}_j + \text{h.c.}) + U \sum_i \frac{\hat{n}_i (\hat{n}_i - 1)}{2} - \mu \sum_i \hat{n}_i$$
Phase diagram (integer filling):

Induction (integer ming): $(t/U)_c$ Insulating phaseSuperfluid phase(localized bosons)(condensate)

Non-perturbative renormalization group

NPRG: implemented on Gibbs free energy $\Gamma[\varphi]$. Γ : Legendre transform of free energy ln \mathcal{Z} .

Idea : construct a family of theories indexed by a scale $0 \le k \le \Lambda$ such that fluctuations for scales $\le k$ are frozen to interpolate between the mean-field $(k = \Lambda)$ and the exact solution (k = 0). $\Gamma \qquad \Gamma_k \qquad S$ $0 \qquad k \qquad \Lambda$ This is done by adding to the action a mass-like term $\Delta S_k[\varphi] = \frac{1}{2} \int_q \varphi(\mathbf{q}) \cdot R_k(\mathbf{q})\varphi(\mathbf{q}), \qquad R_k(\mathbf{q})$: regulator. $R_k(\mathbf{q}) \sim k^2 \text{ if } \mathbf{q} \le k \text{ and } \sim 0 \text{ otherwise.}$ Exact flow equation: $\partial_k \Gamma_k[\varphi] = \frac{1}{2} \operatorname{Tr} \left\{ \partial_k R_k \left(\Gamma_k^{(2)}[\varphi] + R_k \right)^{-1} \right\}.$

Path integral formulation: partition function $\mathcal{Z} = \int \mathcal{D}[\boldsymbol{\varphi}] \exp(-S[\boldsymbol{\varphi}])$. O(N) universality class:

action
$$S[\boldsymbol{\varphi}] = \int_0^\beta \mathrm{d}\tau \int \mathrm{d}^d \mathbf{r} \left\{ \frac{1}{2} \left(\partial_i \boldsymbol{\varphi}\right)^2 + \frac{1}{2c^2} \left(\partial_\tau \boldsymbol{\varphi}\right)^2 + \frac{r_0}{2} \boldsymbol{\varphi}^2 + \frac{u_0}{4!} \left(\boldsymbol{\varphi}^2\right)^2 \right\}.$$

Physical realizations: N = 2 describes SF-MI transition, N = 3 antiferromagnets.

 $\boldsymbol{\varphi}$: bosonic *N*-component field, $\boldsymbol{\varphi}(\mathbf{r}, \tau + \beta) = \boldsymbol{\varphi}(\mathbf{r}, \tau)$. UV cutoff Λ .

T = 0 limit: change of variables $\mathbf{x} = (\mathbf{r}, c\tau)$

Eg. of approximation scheme: the derivative expansion (DE)

$$\Gamma_{k}[\boldsymbol{\varphi}] = \int_{\mathbf{x}} \frac{Z_{k}(\boldsymbol{\varphi}^{2})}{2} (\partial_{\mu}\boldsymbol{\varphi})^{2} + U_{k}(\boldsymbol{\varphi}^{2}) + \frac{Y_{k}(\boldsymbol{\varphi}^{2})}{4} (\boldsymbol{\varphi} \cdot \partial_{\mu}\boldsymbol{\varphi})^{2}.$$

Higgs amplitude mode

Mean-field zero T phase diagram:

Scalar susceptibility computations

t/U

Our results [2] for $\chi''_{s}(\omega)$:

Technique: Add source term $S \rightarrow S + \int_{x} h(\mathbf{x}) \boldsymbol{\varphi}(\mathbf{x})^{2}$. Then $\chi_{s} \sim \delta^{2} \Gamma / \delta^{2} h$. The BMW approximation allows to compute the full momentum dependence of the vertices.

 ω/Δ

In d + 1 = (2 + 1) MF is qualitatively wrong \Rightarrow NPRG.

$$\chi_{s}(\mathbf{r},\tau) = \left\langle \varphi^{2}(\mathbf{r},\tau)\varphi^{2}(0,0) \right\rangle,$$

$$\chi_{s}''(\omega) = \operatorname{Im}[\chi_{s}(\mathbf{q}=0,i\omega_{n} \to \omega+i0^{+})].$$

Evidence of the existence of the Higgs mode for N = 2 and 3! Agreement with previous QMC studies [3, 4].

Conductivity

Noether: O(N) symmetry \Rightarrow conserved current $j_{\mu}^{a} = \boldsymbol{\varphi} \cdot T^{a} \partial_{\mu} \boldsymbol{\varphi}$. Bosons: $\mathbf{j} \sim i(\boldsymbol{\varphi}^{*} \nabla \boldsymbol{\varphi} - \boldsymbol{\varphi} \nabla \boldsymbol{\varphi}^{*})$. T^{a} : skew-symmetric matrix, N(N-1)/2 independent currents.

Conductivity:
$$\sigma^{ab}_{\mu\nu}(i\omega_n) = -\frac{1}{\omega_n} \left[\left\langle j^a_\mu(\mathbf{q}=0,i\omega_n)j^b_\nu(\mathbf{q}=0,-i\omega_n) \right\rangle - \delta_{\mu\nu} \left\langle T^a \boldsymbol{\varphi} \cdot T^b \boldsymbol{\varphi} \right\rangle \right].$$

Symmetry and Ward identities determine its form in the low frequency limit.

- In the disordered phase there is only one independent conductivity behaving as a capacitance, $\sigma(\omega) = -i\omega C_{dis}$.
- In the ordered phase, the order parameter ϕ is finite.

There are two independent conductivites depending on whether T^a acts on φ (class A) or not (class B). σ_A behaves like a perfect inductance $\sigma_A(\omega) = iL_{ord}/(\omega + i0^+)$ and σ_B has a universal finite limit.

References

[1] D. Podolsky et al., Phys. Rev. B 84, 174522 (2011).

[2] F. Rose *et al.*, Phys. Rev. B **91**, 224501 (2015).

[3] K. Chen et al., Phys. Rev. Lett. 110, 170403 (2013).

[4] S. Gazit *et al.*, Phys. Rev. Lett. **110**, 140401 (2013).

[5] F. Rose and N. Dupuis, *in preparation*.

[6] S. Gazit et al., Phys. Rev. Lett. 113, 240601 (2014).

Contact: rose@lptmc.jussieu.fr

• At criticality σ^* reaches a universal finite value.

Results: the ratio C_{dis}/L_{ord} is universal!

For N = 2: $C_{dis}/L_{ord} = 0.105(q^2/h)^2$ [5], in agreement with QMC [6].

Technique: introduce a source gauge field $\partial_{\mu} \boldsymbol{\varphi} \rightarrow (\partial_{\mu} - A_{\mu}) \boldsymbol{\varphi}$.

BMW breaks Ward identities \Rightarrow we make a derivative expansion of the effective action in powers of ∂_{μ} and A_{μ} . Then $\sigma \propto \delta^2 \Gamma / \delta A^2$ is derived at low frequencies.

Advantages of NPRG over other standard techniques to compute transport quantities:

• QMC: no data noise issues means smoother analytic continuation.

• AdS/CFT: link with condensed matter models easier to derive.