Critical Casimir forces and quantum phase transitions

Félix Rose

PhD Advisor: Nicolas Dupuis

Work done in collaboration with Adam Rançon, Louis-Paul Henry, David Lopes Cardozo,

Peter C. W. Holdsworth and Tommaso Roscilde

Laboratoire de physique théorique de la matière condensée, Université Pierre et Marie Curie

Jdoclille, 3 June 2016

"Critical Casimir forces": a classical statistical physics problem...

...on which quantum physics allows us to gain insight!

Outline of the talk:

- What are these critical Casimir forces, and why are they interesting?
- An exact mapping onto a quantum problem.
- Results and conclusion.

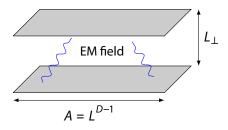
"Critical Casimir forces": a classical statistical physics problem... ...on which quantum physics allows us to gain insight!

Outline of the talk:

- What are these critical Casimir forces, and why are they interesting?
- An exact mapping onto a quantum problem.
- Results and conclusion.

Introduction: the Casimir effect in QED

Consider two parallel metallic plates in vacuum in D dimensions.



Vacuum energy:
$$E_0 = \frac{\hbar}{2} \sum_{\mathbf{k}} \omega_{\mathbf{k}}$$
.

Authorized **k** depend on boundary conditions $\Rightarrow E_0$ depends on L_{\perp} .

The confinement of the EM field is the source of the Casimir force

$$f = -\frac{1}{A} \frac{\partial E_0}{\partial L_\perp}$$

[H.B.G. Casimir, Proc. K. Ned. Akad. Wet. 51 (1948) 793.]

F. Rose (LPT	MC, UPMC)
--------------	-----------

The Casimir effect in QED: more insight

To sum up: two ingredients for the Casimir force.

- Vacuum fluctuations: $E_0 = \sum_k \hbar \omega_k / 2 \neq 0$.
- Boundary conditions (BCs): $\sum_{k} \rightarrow \sum_{k \text{ authorized}}$.

Idea: observe the same effect in confined systems near a bulk second order phase transition.

- Correlations over long ranges $(\xi \gtrsim L_{\perp}) \Rightarrow$ boundary effects.
- Thermal fluctuations play the role of quantum fluctuations.

In addition: universality and scaling laws.

[M. E. Fisher and P.-G. de Gennes, C.R. Acad. Sci. Ser. B 287, 207 (1978).]

The Casimir effect in QED: more insight

To sum up: two ingredients for the Casimir force.

- Vacuum fluctuations: $E_0 = \sum_k \hbar \omega_k / 2 \neq 0$.
- Boundary conditions (BCs): $\sum_{k} \rightarrow \sum_{k \text{ authorized}}$.

Idea: observe the same effect in confined systems near a bulk second order phase transition.

- Correlations over long ranges $(\xi \gtrsim L_{\perp}) \Rightarrow$ boundary effects.
- Thermal fluctuations play the role of quantum fluctuations.

In addition: universality and scaling laws.

[M. E. Fisher and P.-G. de Gennes, C.R. Acad. Sci. Ser. B 287, 207 (1978).]

Statistical physics

Functional integrals can describe the long-distance physics of phase transitions. Eq.: the Ising model

discrete variable $s_i \sim \text{spin}$ field $\varphi(\mathbf{x}) \sim$ magnetization Continuum limit $\mathcal{Z} = \sum_{\{s_i\}} e^{-H[\{s_i\}]}$ $\mathcal{Z} = \int \mathcal{D}[\varphi] e^{-\mathcal{H}[\varphi]}$

Phase transition

- $\begin{cases} \langle \boldsymbol{\varphi} \rangle = 0 & \text{in the symmetric phase,} \\ \langle \boldsymbol{\varphi} \rangle \neq 0 & \text{in the broken symmetry phase (long range order).} \end{cases}$

Casimir force in classical physics

SFT in *D* dimensions with a finite length L_{\perp} :

$$H = \int d^{D} \mathbf{x} \, \mathcal{H} \quad \rightarrow \quad \int d^{D-1} \mathbf{x}_{\parallel} \int_{0}^{L_{\perp}} dx_{\perp} \, \mathcal{H}.$$

The free energy F now depends on L_{\perp} in addition to $t = (T - T_c)/T_c$.

Free energy $F(t, L_{\perp}) \implies Casimir force f(t, L_{\perp}) = -\partial F/\partial L_{\perp}$.

In the vicinity of a 2nd order phase transition: $\xi \sim |t|^{-\nu} \to \infty, L_{\perp} \gg$ microscopic length scales.

Dimensional analysis:

excess free energy density ~ $L_{\perp}^{-D} \mathcal{F}(L_{\perp}/\xi)$, Casimir force ~ $L_{\perp}^{-D} \theta(L_{\perp}/\xi)$

\mathcal{F} , θ : universal scaling functions

Casimir force in classical physics

SFT in *D* dimensions with a finite length L_{\perp} :

$$H = \int d^{D} \mathbf{x} \, \mathcal{H} \quad \rightarrow \quad \int d^{D-1} \mathbf{x}_{\parallel} \int_{0}^{L_{\perp}} dx_{\perp} \, \mathcal{H}.$$

The free energy F now depends on L_{\perp} in addition to $t = (T - T_c)/T_c$.

Free energy $F(t, L_{\perp}) \Rightarrow$ Casimir force $f(t, L_{\perp}) = -\partial F/\partial L_{\perp}$. In the vicinity of a 2nd order phase transition: $\xi \sim |t|^{-\nu} \rightarrow \infty, L_{\perp} \gg$ microscopic length scales.

Dimensional analysis:

excess free energy density ~
$$L_{\perp}^{-D} \mathcal{F}(L_{\perp}/\xi)$$
,
Casimir force ~ $L_{\perp}^{-D} \theta(L_{\perp}/\xi)$

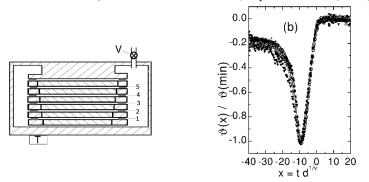
 \mathcal{F} , θ : universal scaling functions

F. Rose (LPTMC, UPMC)

Critical Casimir forces

Experiment

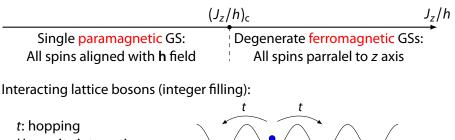
Example: liquid ⁴He films near the λ transition. (3*D XY* universality class). [R. Garcia and M. H. W. Chan, Phys. Rev. Lett. 83, 1187 (1999).]

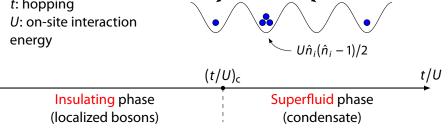


Setup: the thickness of adsorbed films is shifted from its expected value \Rightarrow evidence of the Casimir force.

Quantum phase transitions — examples

Transverse field Ising model: $\hat{H} = -J_z \sum_{\langle ij \rangle} \hat{s}_i^z \hat{s}_j^z - h \sum_i \hat{s}_i^x$





Statistical field theory and QPT

Quantum phase transitions can be studied using field theoretical tools.

Second quantization $\hat{H}, \hat{\psi}(\mathbf{r})^{\dagger}, \hat{\psi}(\mathbf{r})$ operators

 $\mathcal{Z} = \operatorname{Tr} e^{-\beta \hat{H}}$

Path integral formulation

 $\psi(\mathbf{r}, \tau)$ complex fields $\mathcal{Z} = \int \mathcal{D}[\psi^*, \psi] e^{-S[\psi^*, \psi]}$

$$\hat{H}[\hat{\psi}^{\dagger},\hat{\psi}] \rightarrow S[\psi^{*},\psi] = \int_{0}^{\hbar\beta} \mathrm{d}\tau \left\{ H[\psi^{*},\psi] + \int \mathrm{d}^{d}\mathbf{r} \,\psi^{*}\partial_{\tau}\psi \right\}.$$

Periodic BCs: $\psi(\mathbf{r}, \tau + \hbar\beta) = \psi(\mathbf{r}, \tau)$.

- Transforms the *d*-dimensional quantum problem into a d + 1 classical field theory...
- ... at the cost of a new imaginary time dimension $\tau \in [0, \hbar\beta]$.
- A QPT manifests as a phase transition in the classical field theory.

Statistical field theory and QPT

Quantum phase transitions can be studied using field theoretical tools.

Second quantization

 $\hat{H}, \hat{\psi}(\mathbf{r})^{\dagger}, \hat{\psi}(\mathbf{r})$ operators $\mathcal{Z} = \operatorname{Tr} e^{-\beta \hat{H}}$

Path integral formulation

 $\psi(\mathbf{r}, \tau)$ complex fields $\mathcal{Z} = \int \mathcal{D}[\psi^*, \psi] e^{-S[\psi^*, \psi]}$

$$\hat{H}[\hat{\psi}^{\dagger},\hat{\psi}] \rightarrow S[\psi^{*},\psi] = \int_{0}^{\hbar\beta} \mathrm{d}\tau \left\{ H[\psi^{*},\psi] + \int \mathrm{d}^{d}\mathbf{r}\,\psi^{*}\partial_{\tau}\psi \right\}.$$

Periodic BCs: $\psi(\mathbf{r}, \tau + \hbar\beta) = \psi(\mathbf{r}, \tau)$.

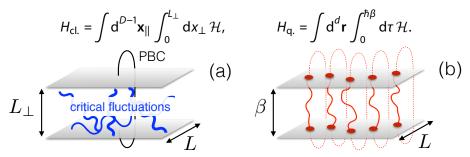
- Transforms the *d*-dimensional quantum problem into a *d* + 1 classical field theory...
- ... at the cost of a new imaginary time dimension $\tau \in [0, \hbar\beta]$.
- A QPT manifests as a phase transition in the classical field theory.

F. Rose (LPTMC, UPMC)

Critical Casimir forces

Classical — quantum mapping

Classical $L_{\perp} < \infty$ theory and quantum T > 0 theory are equivalent!



Scaling functions \mathcal{F} , θ now respectively describe the temperature contribution to free energy and to internal energy.

$$\begin{split} F &= F_{T=0} + \left(k_{\rm B}T\right)^{d+1} / \left(\hbar c\right)^{d} \mathcal{F}\left(\Delta/k_{\rm B}T\right), \\ \epsilon &= -\partial [\beta F] / \partial \beta = \epsilon_{T=0} - \left(k_{\rm B}T\right)^{d+1} / \left(\hbar c\right)^{d} \theta\left(\Delta/k_{\rm B}T\right). \end{split}$$

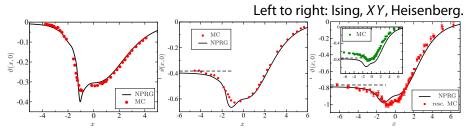
Δ : zero temperature gap.

Review and results

Mapping to the quantum system provides new insight into the critical Casimir force with periodic BCs.

- Allows for experiments (ultracold Bose gases, quantum magnets).
- Theoretical methods for quantum systems can be imported!

Our RG-based results for 2*d* quantum models compare to MC for 3*d* classical systems!



[Rançon et al., in preparation].

Questions?