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Introduction: what are QPTs?

Classical (continuous) phase transitions are well understood. (Landau, Kadanoff, Wilson)

Landau theory: order parameter, symmetry breaking.

Mean-field (usually) incorrect.

Universal physics! E.g.: equation of state (Widom): H = Mδ f (tM−1/β).

What about T = 0 continuous quantum phase transitions (QPTs)?
Ground state qualitatively changes; gap vanishes.

E.g.: Mott insulator-superfluid transition.
Bosons trapped in an optical lattice:

Insulating Superfluid

[Greiner et al., Nature ’02]
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Outline of the presentation

Goal: understand universal properties of QPTs.

A lot is already known about the thermodynamics:
what about the dynamics?

Focus: the quantum O(N) model in 2 + 1 dimensions.

Outline:

presentation of the model, definition of quantities of interest;

what are the issues posed by the dynamics;

strategies to overcome the difficulty with FRG.
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The O(N) model

Lorentz-invariant action; φ: N-component real field (∼ φ4 theory).

S[φ] = ∫
ħβ

0
dτ ∫ d2r { 1

2
(∇φ)2 + 1

2c20
(∂τφ)2 + r0φ2

+ u0(φ2)2}

QPT in 2 space dimensions ≡ classical phase transition in 3 dimensions
→ quantum phase transition controlled by the 3D Wilson-Fisher fixed point.

T

r0r0c

Classical
renormalized

Classical

Quantum
critical

Quantum
disordered

Long range
order

Describes several phase transitions:

N = 2: bosons in optical lattice;
superconductor-insulator transition;

N = 3: antiferromagnetic ordering in
quantum magnets.
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Dynamics

What about the dynamical properties of the system?

Information encoded in finite-momentum behavior of correlation functions!

Excitation spectrum:

bound states; [Rose, Benitez, Léonard and Delamotte, PRD ’16]

amplitude (“Higgs”) mode. [Rose, Léonard and Dupuis, PRB ’15]

Transport properties, e.g. conductivity: Σ(x , y): universal scaling function

σ(ω, T ) = e2

h
Σ (ω

∆
,
kBT
∆

)
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Conductivity

Graal: determine transport properties in the
quantum critical regime for ω ≲ T .

2 possible scenarios:

[Damle and Sachdev, PRB ’97]

T ω

σ(ω)

σ(∞)
σ(0) = ?

Difficult: no quasiparticles, analytic continuation is hard.
Approaches:

QMC (Sørensen, Chen, Prokof’ev, Pollet, Gazit, Podolsky, Auerbach);

Holography (Myers, Sachdev, Witzack-Krempa);

CFT (Poland, Sachdev, Simmons-Duffin, Witzack-Krempa);

FRG (us!).
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Difficulties in studying dynamics

A FRG approach to dynamics is hard for two reasons.

We want the finite-momentum behavior of correlation functions
→ need to go beyond DE!

The theory is formulated in imaginary time. Need to analytically continue...

...the results? (Successful at T = 0; unsatisfactory at T > 0.)

...the flow equations? (Extremely difficult!)

Our testbed: two-point correlation functions, conductivity.
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Intermezzo: definition of conductivity?

Bosons (N = 2): current j ∼ i(ψ∗∇ψ − ψ∇ψ∗) ∼ φ i ε i j∇φ j , {
ψ = φ1 + iφ2 ,

ε i j = −ε j i .

Generalization to N > 2:

jaµ = φ ⋅ T a∂µφ,
T a : skew-symmetric matrix,

{T a}: generators of SO(N) rotations.
→ N(N − 1)/2 independent currents.

[ jaµ = −δS/δAaµ]
Response to an external gauge field Aµ = AaµT

a :
given by conductivity tensor,

⟨ jaµ⟩ ∼ σabµν ∂tAbν .

Linear response theory

Kabµν (x − x′) = δ(2) lnZ[A]
δAaµ(x)δAbν (x′)

∼ ⟨ jaµ(x) jbν (x′)⟩

σabµν (iωn) = −
1
ωn

Kabµν (px = 0, py = 0, pz = ωn)
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Effective action formalism

Conductivity → 4-point correlation functions ⟨ jaµ jbν ⟩ (difficult!)

Trick: couple the action to two sources, gauge field A and linear source J:

Z[J,A] = ∫ D[Φ] exp(−S[Φ,A] + ∫
x
J ⋅ Φ) [∂µ → Dµ = ∂µ − Aµ].

Effective action: Legendre transform of lnZ wrt J, but not A:

Γ[Φ,A] = − lnZ[J,A] + ∫
x
J ⋅ Φ.

Conductivity (∼ Kabµν ): now expressed with low-order vertices

Kabµν = −Γ(0,2)aµ ,bν + Γ(1,1)i ,aµ (Γ
(2,0))

−1

i j
Γ(1,1)j ,bν with Γ(n ,m)

=
δn+mΓ
δnΦδmA

»»»»»»»»A→0
.
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Approximation scheme

Suitable FRG scheme:

preserves gauge invariance (→ excludes BMW!);

has nontrivial momentum dependence.

LPA′′: [Hasselmann, PRE ’12].

Solution: NLPA / LPA′′ Ansatz. LPA′′ for conductivity: [Rose and Dupuis, PRB ’17].

Γk[Φ] = ∫
x

1
2
(∂µΦ) ⋅ Zk (−∂2)(∂µΦ) + 1

4
(Φ ⋅ ∂µΦ)Yk (−∂2)(Φ ⋅ ∂µΦ) + Uk (Φ2)

+
1
4
FaµνX1,k (−D2)Faµν +

1
4
FaµνT

aΦ ⋅ X2,k (−D2)FbµνT bΦ.

Zk (p2), Yk (p2), X1,k (p2) and X2,k (p2) have non-trivial momentum dependence.

Fµν = ∂µAν − ∂νAµ − [Aµ , Aν]: building block for two O(A2µ) terms.

Gauge invariance preserved [Morris, N. Phys. B ’00; Bartosh, PRB ’13, ...].

σ(ω) has a simple expression as a function of Zk , X1,k and X2,k .
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LPA′′: benchmark

Two point correlation function: qualitative agreement with BMW.

Longitudinal susceptibility:
(N = 2, ordered phase)

[Rose and Dupuis, PRB ’18] 0 2 4
0

0.2

0.4

0.6

ω/∆

∆
2−

η
χ′
′ L(ω

) LPA′′

BMW

Drawback: no field dependence.

Disappointing value of η...
LPA′′ BMW Bootstrap

ν 0.679 0.632 0.629971(4)
η 0.047 0.039 0.036298(2)

...and large-N only partially reproduced in symmetric phase.
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Results

Surprise in the ordered phase: (σ has then 2 components σA and σB)

0 5 10 15 20

0.34

0.36

0.38

ω/∆

Re
[σ

B
(ω

)]

N = 3
N = 4
N = 10
N = 1000
N = ∞

Exact result: σB (ω) = π/8.

σB(ω → 0) does not numerically depend on N! [Rose et Dupuis, PRB ’17]

Conjecture: σB(ω → 0) = π
8

for all N: “superuniversality”!

Summary: “simple” scheme, gives access to ω > 0... but not T > 0!

Non-local potentials have been considered in other contexts.
Stat. mech.: [Canet et al., PRE ’16]

High energy phys.: [Feldmann et al., arXiv ’17]
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Beyond LPA′′: LPA′ continued?

Open problem: analytic continuation at T > 0 (Floerchinger, Pawlowski, Strodthoff)

→ continue flow equations?

Issues:

for iωn ≠ 2πinT , ∑iωm
≠ continuation: ∑iωm

must be done analytically...

...but after continuation ∫q develop poles!

Solution: LPA′ “continued” (LPA′C)
∂kΓkÍÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒ Ï

full momentum dependence

=
1
2
Tr ∂kRk (

LPA′ AnsatzÌÒÒÒÒÒÒÒÒÒÒÒÒÐ ÒÒÒÒÒÒÒÒÒÒÒÒÎ
Γ(2)LPA′ ,k +Rk )

−1

RHS: LPA vertices and propagators; Θ regulator on q → Tr computed analytically

∂kΓ
(2)
k (iωn) = ∂kFk (iωn)

analytic continuation
−−−−−−−−−−−−−−−→ ∂kΓ

(2)
k (z ∈ C) = ∂kFk (z ∈ C)

F: explicit function of complex variable z = iωn .
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LPA′ continued: preliminary results at T = 0

Self-energy corrections Z τ(ω): Γ(2)(p = 0, ω) = −ω2Z τ(ω) + ∆2 .

0 5 10 15 20
0.80

0.90

1.00

ω/∆

Re
[Z̃

τ (ω
)]

0 5 10 15 20
0.00

0.05

0.10

0.15

ω/∆

Im
[Z̃

τ (ω
)] LPA′C (real-time flow)

LPA′′ + Padé

LPA′C + Padé

Ordered phase, N = 2

Reasonable agreement with LPA′′ despite crudeness of approximation...

...but unsatisfactory in the symmetric phase (no field dependence).

Lead for improvement: more involved Ansatz (DE?) in rhs
→ numerical effort necessary for momentum integrals.
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Summary and conclusion

Takeaway messages:

dynamics: difficult to determine but rich in information;

motivates development of new FRG schemes;

FRG can deal with real-time flow equations!

Perspectives:

improve LPA′C to explore finite-T physics;

consider other transport coefficients, e.g. viscosity.
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Experimental example: Mott insulator-superfluid transition

Bosons in an optical lattice:

Insulating Superfluid

Measuring the phase coherence of the condensate through interference:

From (a) to (h): potential depth increases. [Greiner et al., Nature ’02]
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Conductivity: definition

O(N) symmetry → angular momentum conservation L, current: ∂tL + ∇ ⋅ J = 0.

non-Abelian gauge field: ∂µ → Dµ = ∂µ − Aµ .

Aµ = AaµT
a
∈ so(N) T a : N(N − 1)/2 generators, T ai j = −T aji

Current density Jaµ = −
δS
δAaµ

= jaµ − A
a
µφ ⋅ T aφ, jaµ = φ ⋅ T a∂µφ

N = 2 (bosons): j ∼ i(ψ∗∇ψ − ψ∇ψ∗), ψ = φ1 + iφ2 .

Linear response

Kabµν (x − x′) = ⟨ jaµ(x) jbν (x′)⟩ − δµνδ(x − x′)⟨T aΦ ⋅ T bΦ⟩

σabµν (iωn) = −
1
ωn

Kabµν (px = 0, py = 0, pz = iωn) tenseur de conductivité
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Vertices’ expression

Writing the vertices in the most general form, one has

Γ(2,0)i j (p,Φ) = δ i jΓA + Φ iΦ jΓB , (inverse propagator!)

Γ(1,1)i ,aµ(p,Φ) = ipµ(T aΦ) jΨA ,

Γ(0,2)i ,aµ (p,Φ) = δab[pµpνΨB + δµν Ψ̄B] + (T aΦ) ⋅ (T bΦ)[pµpνΨC + δµν Ψ̄C],

where the Γs and the Ψs are functions of p2 and ρ = Φ2/2.

Ward identities associated with gauge invariance indicates that only ΓA,B and ΨB ,C are independent.

Félix Rose (TUM) Real-time dynamics with FRG July 11, 2019 15 / 15



NPRG formalism

Problem: regulator (∼ mass) breaks down gauge invariance:

∆Sk =
1
2
∫
q
Φ(q) ⋅ Rk (q2)Φ(−q).

How to preserve gauge invariance?
Solution: make the regulator A-dependent!
[Morris, N. Phys. B ’00] [Codello, Percacci et coll., EPJC ’16] [Bartosh, PRB ’13]

∆Sk =
1
2
∫
x
Φ(x) ⋅ Rk (−∂2µ)Φ(x) → ∆Sk[A] =

1
2
∫
x
Φ(x) ⋅ Rk (−D2

µ)Φ(x)

Modified flow equations in presence of A.
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RG approximation scheme

Which approximation procedure do we use?

First idea: BMW to obtain full momentum dependence (as done for the study of the Higgs mode).

Problem: it fails!

Impossible to close the flow equations rigorously.

Setting momenta to zero in flow equations breaks down gauge invariance.

Vertices have a nontrival momenta dependence due to the derivative in jaµ ...

...so it is not possible to close the equations without additional uncontrolled approximations...

...which break Ward identities!
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LPA′′

Γk[Φ,A] = ∫
x

1
2
(DµΦ) ⋅ Zk (−D2)(DµΦ) + 1

4
(Φ ⋅ ∂µΦ)Yk (−∂2)(Φ ⋅ ∂µΦ) + Uk (ρ)

+
1
4
FaµνX1,k (−D2)Faµν +

1
4
FaµνT

aΦ ⋅ X2,k (−D2)FbµνT bΦ.

Expression of conductivity within LPA′′

σA(ω) = 2ρ0Z(ω2)/(ω + i0+) + ω[X1(ω2) + 2ρ0X2(ω2)],
σB(ω) = ωX1(ω2).

ρ = Φ2/2, ρ0,k : minimum of the potentiel.
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Superuniversality of σB

Origins: Goldstone-modes controlled physics. Gauge-invariant action:

Γeff[π,A] = Z ∫
x
[(∂µ − Aµ)π]2 +⋯

Free bosons → σB computed via Wick’s theorem,

⟨ j j⟩ ∼ ∫
q
Γ(2,1)GT(q)Γ(2,1)GT(p + q).

Z factors disappear.

N = ∞ result recovered.
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