Real-time dynamics with FRG: overcoming the burden of analytic continuation

Félix Rose

In collaboration with Nicolas Dupuis (LPTMC, UPMC)

Exact Renormalization Group 2018 July 11, 2018

Félix Rose (T	UΜ)
---------------	----	---

Real-time dynamics with FRG

Introduction: what are QPTs?

Classical (continuous) phase transitions are well understood.

(Landau, Kadanoff, Wilson)

- Landau theory: order parameter, symmetry breaking.
- Mean-field (usually) incorrect.

• Universal physics! E.g.: equation of state (Widom): $H = M^{\delta} f(tM^{-1/\beta})$.

What about *T* = 0 continuous quantum phase transitions (QPTs)? Ground state *qualitatively* changes; gap vanishes.

> E.g.: Mott insulator-superfluid transition. Bosons trapped in an optical lattice:

Insulating

[Greiner et al., Nature '02]

Real-time dynamics with FRG

Introduction: what are QPTs?

Classical (continuous) phase transitions are well understood.

- Landau theory: order parameter, symmetry breaking.
- Mean-field (usually) incorrect.
- Universal physics! E.g.: equation of state (Widom): $H = M^{\delta} f(tM^{-1/\beta})$.
- What about T = 0 continuous quantum phase transitions (QPTs)? Ground state qualitatively changes; gap vanishes.

E.g.: Mott insulator-superfluid transition.

Bosons trapped in an optical lattice:

Insulating

Superfluid

[Greiner et al., Nature '02]

Real-time dynamics with FRG

(Landau, Kadanoff, Wilson)

Outline of the presentation

Goal: understand universal properties of QPTs.

A lot is already known about the thermodynamics: what about the dynamics?

Focus: the quantum O(N) model in 2 + 1 dimensions.

Outline:

- presentation of the model, definition of quantities of interest;
- what are the issues posed by the dynamics;
- strategies to overcome the difficulty with FRG.

The O(N) model

Lorentz-invariant action; φ : *N*-component real field (~ φ^4 theory).

$$S[\boldsymbol{\varphi}] = \int_0^{\hbar\beta} \mathrm{d}\tau \int \mathrm{d}^2 \mathbf{r} \left\{ \frac{1}{2} \left(\nabla \boldsymbol{\varphi} \right)^2 + \frac{1}{2c_0^2} \left(\partial_\tau \boldsymbol{\varphi} \right)^2 + r_0 \boldsymbol{\varphi}^2 + u_0 \left(\boldsymbol{\varphi}^2 \right)^2 \right\}$$

QPT in 2 space dimensions \equiv classical phase transition in 3 dimensions \rightarrow quantum phase transition controlled by the 3D Wilson-Fisher fixed point.

Describes several phase transitions:

- N = 2: bosons in optical lattice;
 superconductor-insulator transition;
- *N* = 3: antiferromagnetic ordering in quantum magnets.

Dynamics

What about the dynamical properties of the system?

Information encoded in finite-momentum behavior of correlation functions!

- Excitation spectrum:
 - bound states;
 - amplitude ("Higgs") mode.

[Rose, Benitez, Léonard and Delamotte, PRD '16] [Rose, Léonard and Dupuis, PRB '15]

Transport properties, e.g. conductivity:

 $\Sigma(x, y)$: universal scaling function

$$\sigma(\omega,T) = \frac{e^2}{h} \Sigma\left(\frac{\omega}{\Delta},\frac{k_{\rm B}T}{\Delta}\right)$$

Dynamics

What about the dynamical properties of the system?

Information encoded in finite-momentum behavior of correlation functions!

- Excitation spectrum:
 - bound states;
 - amplitude ("Higgs") mode.

• Transport properties, e.g. conductivity:

[Rose, Benitez, Léonard and Delamotte, PRD '16] [Rose, Léonard and Dupuis, PRB '15]

 $\Sigma(x, y)$: universal scaling function

$$\sigma(\omega,T) = \frac{e^2}{h} \Sigma\left(\frac{\omega}{\Delta}, \frac{k_{\rm B}T}{\Delta}\right)$$

Conductivity

Graal: determine transport properties in the quantum critical regime for $\omega \leq T$.

2 possible scenarios:

[Damle and Sachdev, PRB '97]

Difficult: no quasiparticles, analytic continuation is hard. Approaches:

- QMC (Sørensen, Chen, Prokof'ev, Pollet, Gazit, Podolsky, Auerbach);
- Holography (Myers, Sachdev, Witzack-Krempa);
- CFT (Poland, Sachdev, Simmons-Duffin, Witzack-Krempa);
- FRG (us!).

A FRG approach to dynamics is hard for two reasons.

- We want the finite-momentum behavior of correlation functions \rightarrow need to go beyond DE!
- The theory is formulated in imaginary time. Need to analytically continue...

the results?	(Successful at $T = 0$; unsatisfactory at $T > 0$.)
the flow equations?	(Extremely difficult!)

Our testbed: two-point correlation functions, conductivity.

Intermezzo: definition of conductivity?

Bosons (N = 2): current
$$\mathbf{j} \sim \mathbf{i}(\psi^* \nabla \psi - \psi \nabla \psi^*) \sim \varphi_i \varepsilon_{ij} \nabla \varphi_j, \begin{cases} \psi = \varphi_1 + \mathbf{i}\varphi_2, \\ \varepsilon_{ij} = -\varepsilon_{ji}. \end{cases}$$

Generalization to N > 2:

$$j^a_{\mu} = \boldsymbol{\varphi} \cdot T^a \partial_{\mu} \boldsymbol{\varphi},$$

 $\rightarrow N(N-1)/2$ independent currents.

 $[j^a_{\mu} = -\delta S / \delta A^a_{\mu}]$ Response to an external gauge field $A_{\mu} = A^a_{\mu} T^a$: given by conductivity tensor,

$$\left\langle j^a_{\mu}\right\rangle \sim \sigma^{ab}_{\mu\nu}\partial_t A^b_{\nu}.$$

 T^{a} : skew-symmetric matrix, $\{T^{a}\}$: generators of SO(*N*) rotations.

Linear response theory

$$\begin{aligned} \mathcal{K}_{\mu\nu}^{ab}(\mathbf{x} - \mathbf{x}') &= \frac{\delta^{(2)} \ln \mathcal{Z}[\mathbf{A}]}{\delta A_{\mu}^{a}(\mathbf{x}) \delta A_{\nu}^{b}(\mathbf{x}')} \sim \langle j_{\mu}^{a}(\mathbf{x}) j_{\nu}^{b}(\mathbf{x}') \rangle \\ \sigma_{\mu\nu}^{ab}(\mathrm{i}\omega_{n}) &= -\frac{1}{\omega_{n}} \mathcal{K}_{\mu\nu}^{ab}(p_{x} = 0, p_{y} = 0, p_{z} = \omega_{n}) \end{aligned}$$

Intermezzo: definition of conductivity?

Bosons (N = 2): current
$$\mathbf{j} \sim \mathbf{i}(\psi^* \nabla \psi - \psi \nabla \psi^*) \sim \varphi_i \varepsilon_{ij} \nabla \varphi_j, \quad \begin{cases} \psi = \varphi_1 + \mathbf{i}\varphi_2, \\ \varepsilon_{ij} = -\varepsilon_{ji}. \end{cases}$$

Generalization to N > 2:

$$j^a_{\mu} = \boldsymbol{\varphi} \cdot \boldsymbol{T}^a \partial_{\mu} \boldsymbol{\varphi},$$

 $\rightarrow N(N-1)/2$ independent currents.

 $[j^a_{\mu} = -\delta S/\delta A^a_{\mu}]$ esponse to an external gauge field $A_{\mu} = A^a_{\mu}T^a$: ven by conductivity tensor,

$$\left\langle j^a_\mu\right\rangle \sim \sigma^{ab}_{\mu\nu}\partial_t A^b_\nu.$$

 T^{a} : skew-symmetric matrix, $\{T^{a}\}$: generators of SO(N) rotations.

Linear response theory

$$\mathcal{K}^{ab}_{\mu\nu}(\mathbf{x} - \mathbf{x}') = \frac{\delta^{(2)} \ln \mathcal{Z}[\mathbf{A}]}{\delta A^a_{\mu}(\mathbf{x}) \delta A^b_{\nu}(\mathbf{x}')} \sim \langle j^a_{\mu}(\mathbf{x}) j^b_{\nu}(\mathbf{x}') \rangle$$

$$\sigma^{ab}_{\mu\nu}(i\omega_n) = -\frac{1}{\omega_n} \mathcal{K}^{ab}_{\mu\nu}(p_x = 0, p_y = 0, p_z = \omega_n)$$

Intermezzo: definition of conductivity?

Bosons (N = 2): current
$$\mathbf{j} \sim \mathbf{i}(\psi^* \nabla \psi - \psi \nabla \psi^*) \sim \varphi_i \varepsilon_{ij} \nabla \varphi_j, \quad \begin{cases} \psi = \varphi_1 + \mathbf{i}\varphi_2, \\ \varepsilon_{ij} = -\varepsilon_{ji}. \end{cases}$$

Generalization to N > 2:

$$j^a_{\mu} = \boldsymbol{\varphi} \cdot \boldsymbol{T}^a \partial_{\mu} \boldsymbol{\varphi},$$

 $\rightarrow N(N-1)/2$ independent currents.

 $[j^a_{\mu} = -\delta S / \delta A^a_{\mu}]$ Response to an external gauge field $A_{\mu} = A^a_{\mu} T^a$: given by conductivity tensor,

$$\langle j^a_\mu\rangle\sim \sigma^{ab}_{\mu\nu}\partial_t A^b_\nu.$$

 T^{a} : skew-symmetric matrix, $\{T^{a}\}$: generators of SO(*N*) rotations.

Linear response theory

$$\mathcal{K}^{ab}_{\mu\nu}(\mathbf{x} - \mathbf{x}') = \frac{\delta^{(2)} \ln \mathcal{Z}[\mathbf{A}]}{\delta A^a_{\mu}(\mathbf{x}) \delta A^b_{\nu}(\mathbf{x}')} \sim \langle j^a_{\mu}(\mathbf{x}) j^b_{\nu}(\mathbf{x}') \rangle$$

$$\sigma^{ab}_{\mu\nu}(i\omega_n) = -\frac{1}{\omega_n} \mathcal{K}^{ab}_{\mu\nu}(p_x = 0, p_y = 0, p_z = \omega_n)$$

Effective action formalism

Conductivity \rightarrow 4-point correlation functions $\langle j^a_{\mu} j^b_{\nu} \rangle$ (difficult!)

Trick: couple the action to two sources, gauge field A and linear source J:

$$\mathcal{Z}[\mathbf{J},\mathbf{A}] = \int \mathcal{D}[\mathbf{\Phi}] \exp(-S[\mathbf{\Phi},\mathbf{A}] + \int_{\mathbf{x}} \mathbf{J} \cdot \mathbf{\Phi}) \qquad \qquad [\partial_{\mu} \to D_{\mu} = \partial_{\mu} - A_{\mu}].$$

Effective action: Legendre transform of $\ln Z$ wrt J, but not A:

$$\Gamma[\Phi, \mathbf{A}] = -\ln \mathcal{Z}[\mathbf{J}, \mathbf{A}] + \int_{\mathbf{x}} \mathbf{J} \cdot \mathbf{\Phi}.$$

Conductivity (~ $K_{\mu\nu}^{ab}$): now expressed with low-order vertices

 $K_{\mu\nu}^{ab} = -\Gamma_{a\mu,b\nu}^{(0,2)} + \Gamma_{i,a\mu}^{(1,1)} \left(\Gamma^{(2,0)} \right)_{ii}^{-1} \Gamma_{j,b\nu}^{(1,1)} \qquad \text{with} \qquad \Gamma^{(n,m)} = \left. \frac{\delta^{n+m} \Gamma}{\delta^n \Phi \delta^m A} \right|_{h=0}.$

Approximation scheme

Suitable FRG scheme:

- preserves gauge invariance (\rightarrow excludes BMW!);
- has nontrivial momentum dependence.

LPA": [Hasselmann, PRE '12].

Solution: NLPA / LPA" Ansatz.

LPA" for conductivity: [Rose and Dupuis, PRB '17].

$$\Gamma_{k}[\Phi] = \int_{\mathbf{x}} \frac{1}{2} (\partial_{\mu} \Phi) \cdot Z_{k}(-\partial^{2})(\partial_{\mu} \Phi) + \frac{1}{4} (\Phi \cdot \partial_{\mu} \Phi) Y_{k}(-\partial^{2})(\Phi \cdot \partial_{\mu} \Phi) + U_{k}(\Phi^{2})$$
$$+ \frac{1}{4} F^{a}_{\mu\nu} X_{1,k}(-D^{2}) F^{a}_{\mu\nu} + \frac{1}{4} F^{a}_{\mu\nu} T^{a} \Phi \cdot X_{2,k}(-D^{2}) F^{b}_{\mu\nu} T^{b} \Phi.$$

• $Z_k(\mathbf{p}^2)$, $Y_k(\mathbf{p}^2)$, $X_{1,k}(\mathbf{p}^2)$ and $X_{2,k}(\mathbf{p}^2)$ have non-trivial momentum dependence.

- $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} [A_{\mu}, A_{\nu}]$: building block for two $\mathcal{O}(A_{\mu}^2)$ terms.
- Gauge invariance preserved [Morris, N. Phys. B '00; Bartosh, PRB '13, ...]
- $\sigma(\omega)$ has a simple expression as a function of Z_k , $X_{1,k}$ and $X_{2,k}$.

Félix Rose (TUM)

Approximation scheme

Suitable FRG scheme:

- preserves gauge invariance (\rightarrow excludes BMW!);
- has nontrivial momentum dependence.

LPA": [Hasselmann, PRE '12].

Solution: NLPA / LPA" Ansatz.

LPA" for conductivity: [Rose and Dupuis, PRB '17].

$$\Gamma_{k}[\Phi] = \int_{\mathbf{x}} \frac{1}{2} (\partial_{\mu} \Phi) \cdot Z_{k}(-\partial^{2})(\partial_{\mu} \Phi) + \frac{1}{4} (\Phi \cdot \partial_{\mu} \Phi) Y_{k}(-\partial^{2})(\Phi \cdot \partial_{\mu} \Phi) + U_{k}(\Phi^{2})$$
$$+ \frac{1}{4} F^{a}_{\mu\nu} X_{1,k}(-D^{2}) F^{a}_{\mu\nu} + \frac{1}{4} F^{a}_{\mu\nu} T^{a} \Phi \cdot X_{2,k}(-D^{2}) F^{b}_{\mu\nu} T^{b} \Phi.$$

• $Z_k(\mathbf{p}^2)$, $Y_k(\mathbf{p}^2)$, $X_{1,k}(\mathbf{p}^2)$ and $X_{2,k}(\mathbf{p}^2)$ have non-trivial momentum dependence.

- $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} [A_{\mu}, A_{\nu}]$: building block for two $\mathcal{O}(A_{\mu}^2)$ terms.
- Gauge invariance preserved [Morris, N. Phys. B '00; Bartosh, PRB '13, ...].
- $\sigma(\omega)$ has a simple expression as a function of Z_k , $X_{1,k}$ and $X_{2,k}$.

Approximation scheme

Suitable FRG scheme:

- preserves gauge invariance (\rightarrow excludes BMW!);
- has nontrivial momentum dependence.

LPA": [Hasselmann, PRE '12].

Solution: NLPA / LPA" Ansatz.

LPA" for conductivity: [Rose and Dupuis, PRB '17].

$$\Gamma_{k}[\Phi, \mathbf{A}] = \int_{\mathbf{x}} \frac{1}{2} (D_{\mu} \Phi) \cdot Z_{k}(-\mathbf{D}^{2}) (D_{\mu} \Phi) + \frac{1}{4} (\Phi \cdot \partial_{\mu} \Phi) Y_{k}(-\partial^{2}) (\Phi \cdot \partial_{\mu} \Phi) + U_{k}(\Phi^{2})$$
$$+ \frac{1}{4} F^{a}_{\mu\nu} X_{1,k}(-\mathbf{D}^{2}) F^{a}_{\mu\nu} + \frac{1}{4} F^{a}_{\mu\nu} T^{a} \Phi \cdot X_{2,k}(-\mathbf{D}^{2}) F^{b}_{\mu\nu} T^{b} \Phi.$$

- $Z_k(\mathbf{p}^2)$, $Y_k(\mathbf{p}^2)$, $X_{1,k}(\mathbf{p}^2)$ and $X_{2,k}(\mathbf{p}^2)$ have non-trivial momentum dependence.
- $F_{\mu\nu} = \partial_{\mu}A_{\nu} \partial_{\nu}A_{\mu} [A_{\mu}, A_{\nu}]$: building block for two $\mathcal{O}(A_{\mu}^2)$ terms.
- Gauge invariance preserved [Morris, N. Phys. B '00; Bartosh, PRB '13, ...].
- $\sigma(\omega)$ has a simple expression as a function of Z_k , $X_{1,k}$ and $X_{2,k}$.

LPA": benchmark

Two point correlation function: qualitative agreement with BMW.

Longitudinal susceptibility: (N = 2, ordered phase)

[Rose and Dupuis, PRB '18]

Drawback: no field dependence.

• Disappointing value of η...

	LPA"	BMW	Bootstrap
V	0.679		0.629971(4)
	0.047	0.039	

• ...and large-N only partially reproduced in symmetric phase.

LPA": benchmark

Two point correlation function: qualitative agreement with BMW.

Longitudinal susceptibility: (N = 2, ordered phase)

[Rose and Dupuis, PRB '18]

Drawback: no field dependence.

• Disappointing value of η ...

	LPA"	BMW	Bootstrap
v	0.679	0.632	0.629971(4)
η	0.047	0.039	0.036298(2)

• ...and large-N only partially reproduced in symmetric phase.

Results

Surprise in the ordered phase:

(σ has then 2 components σ_A and σ_B)

 $\sigma_B(\omega \rightarrow 0)$ does not numerically depend on N!

[Rose et Dupuis, PRB '17]

Conjecture:
$$\sigma_B(\omega \to 0) = \frac{\pi}{8}$$
 for all N: "superuniversality"!

Summary: "simple" scheme, gives access to $\omega > 0...$ but not T > 0!

Non-local potentials have been considered in other contexts

Stat. mech.: [Canet et al., PRE '16]

High energy phys.: [Feldmann et al., arXiv '17]

Results

Surprise in the ordered phase:

(σ has then 2 components σ_A and σ_B)

 $\sigma_B(\omega \rightarrow 0)$ does not numerically depend on N!

[Rose et Dupuis, PRB '17]

Conjecture:
$$\sigma_B(\omega \to 0) = \frac{\pi}{8}$$
 for all N: "superuniversality"!

Summary: "simple" scheme, gives access to $\omega > 0$... but not T > 0!

Non-local potentials have been considered in other contexts.

Stat. mech.: [Canet et al., PRE '16]

High energy phys.: [Feldmann et al., arXiv '17]

Beyond LPA": LPA' continued?

Open problem: analytic continuation at T > 0

(Floerchinger, Pawlowski, Strodthoff)

\rightarrow continue flow equations?

Issues:

- for $i\omega_n \neq 2\pi i nT$, $\sum_{i\omega_m} \neq$ continuation: $\sum_{i\omega_m} must$ be done analytically...
- ...but after continuation \int_{q} develop poles!

Solution: LPA' "continued" (LPA'C)

$$\underbrace{\partial_k \Gamma_k}_{k} = \frac{1}{2} \operatorname{Tr} \partial_k R_k (\overbrace{\Gamma_{\text{LPA'},k}^{(2)}}^{\text{LPA' Ansatz}} + R_k)$$

full momentum dependence

RHS: LPA vertices and propagators; Θ regulator on $\mathbf{q} \rightarrow \mathsf{Tr}$ computed analytically

$$\partial_k \Gamma_k^{(2)}(i\omega_n) = \partial_k F_k(i\omega_n) \xrightarrow{\text{analytic continuation}} \partial_k \Gamma_k^{(2)}(z \in \mathbb{C}) = \partial_k F_k(z \in \mathbb{C})$$

F: explicit function of complex variable $z = i\omega_n$.

Beyond LPA": LPA' continued?

Open problem: analytic continuation at T > 0

(Floerchinger, Pawlowski, Strodthoff)

 \rightarrow continue flow equations?

Issues:

- for $i\omega_n \neq 2\pi i nT$, $\sum_{i\omega_m} \neq$ continuation: $\sum_{i\omega_m} must$ be done analytically...
- ...but after continuation \int_{q} develop poles!

Solution: LPA' "continued" (LPA'C)

$$\underbrace{\partial_k \Gamma_k}_{k} = \frac{1}{2} \operatorname{Tr} \partial_k R_k (\Gamma_{\text{LPA'},k}^{(2)} + R_k)^{-1}$$

.

full momentum dependence

RHS: LPA vertices and propagators; Θ regulator on $\mathbf{q} \rightarrow \text{Tr computed analytically}$

$$\partial_k \Gamma_k^{(2)}(i\omega_n) = \partial_k F_k(i\omega_n) \xrightarrow{\text{analytic continuation}} \partial_k \Gamma_k^{(2)}(z \in \mathbb{C}) = \partial_k F_k(z \in \mathbb{C})$$

F: explicit function of complex variable $z = i\omega_n$.

LPA' continued: preliminary results at T = 0

- Reasonable agreement with LPA" despite crudeness of approximation...
- ...but unsatisfactory in the symmetric phase (no field dependence).

Lead for improvement: more involved Ansatz (DE?) in rhs \rightarrow numerical effort necessary for momentum integrals.

LPA' continued: preliminary results at T = 0

- Reasonable agreement with LPA" despite crudeness of approximation...
- ...but unsatisfactory in the symmetric phase (no field dependence).

Lead for improvement: more involved Ansatz (DE?) in rhs \rightarrow numerical effort necessary for momentum integrals.

Takeaway messages:

- dynamics: difficult to determine but rich in information;
- motivates development of new FRG schemes;
- FRG can deal with real-time flow equations!

Perspectives:

- improve LPA'C to explore finite-*T* physics;
- consider other transport coefficients, e.g. viscosity.

Félix Rose (TUM)

Experimental example: Mott insulator-superfluid transition

Bosons in an optical lattice:

Measuring the phase coherence of the condensate through interference:

From (a) to (h): potential depth increases.

[Greiner et al., Nature '02]

Conductivity: definition

O(N) symmetry \rightarrow angular momentum conservation *L*, current: $\partial_t L + \nabla \cdot J = 0$.

non-Abelian gauge field: $\partial_{\mu} \rightarrow D_{\mu} = \partial_{\mu} - A_{\mu}$.

$$A_{\mu} = A_{\mu}^{a} T^{a} \in \mathrm{so}(N) \qquad T^{a} \colon N(N-1)/2 \text{ generators}, \ T_{ij}^{a} = -T_{ji}^{a}$$

Current density $J_{\mu}^{a} = -\frac{\delta S}{\delta A_{\mu}^{a}} = j_{\mu}^{a} - A_{\mu}^{a} \boldsymbol{\varphi} \cdot T^{a} \boldsymbol{\varphi}, \qquad j_{\mu}^{a} = \boldsymbol{\varphi} \cdot T^{a} \partial_{\mu} \boldsymbol{\varphi}$
 $N = 2 \text{ (bosons): } \mathbf{j} \sim \mathrm{i}(\boldsymbol{\psi}^{*} \nabla \boldsymbol{\psi} - \boldsymbol{\psi} \nabla \boldsymbol{\psi}^{*}), \quad \boldsymbol{\psi} = \boldsymbol{\varphi}_{1} + \mathrm{i}\boldsymbol{\varphi}_{2}.$

Linear response

$$\begin{aligned} \kappa^{ab}_{\mu\nu}(\mathbf{x} - \mathbf{x}') &= \langle j^a_{\mu}(\mathbf{x}) j^b_{\nu}(\mathbf{x}') \rangle - \delta_{\mu\nu} \delta(\mathbf{x} - \mathbf{x}') \langle T^a \mathbf{\Phi} \cdot T^b \mathbf{\Phi} \rangle \\ \sigma^{ab}_{\mu\nu}(i\omega_n) &= -\frac{1}{\omega_n} \kappa^{ab}_{\mu\nu}(p_x = 0, p_y = 0, p_z = i\omega_n) \end{aligned}$$
tenseur de conductivité

Writing the vertices in the most general form, one has

$$\Gamma_{ij}^{(2,0)}(\mathbf{p}, \mathbf{\Phi}) = \delta_{ij}\Gamma_A + \Phi_i \Phi_j \Gamma_B, \qquad \text{(inverse propagator!)}$$

$$\Gamma_{i,a\mu}^{(1,1)}(\mathbf{p}, \mathbf{\Phi}) = ip_{\mu}(T^a \mathbf{\Phi})_j \Psi_A,$$

$$\Gamma_{i,a\mu}^{(0,2)}(\mathbf{p}, \mathbf{\Phi}) = \delta_{ab}[p_{\mu}p_{\nu}\Psi_B + \delta_{\mu\nu}\bar{\Psi}_B] + (T^a \mathbf{\Phi}) \cdot (T^b \mathbf{\Phi})[p_{\mu}p_{\nu}\Psi_C + \delta_{\mu\nu}\bar{\Psi}_C],$$

where the Γ s and the Ψ s are functions of \mathbf{p}^2 and $\rho = \mathbf{\Phi}^2/2$.

Ward identities associated with gauge invariance indicates that only $\Gamma_{A,B}$ and $\Psi_{B,C}$ are independent.

NPRG formalism

Problem: regulator (~ mass) breaks down gauge invariance:

$$\Delta S_k = \frac{1}{2} \int_{\mathbf{q}} \mathbf{\Phi}(\mathbf{q}) \cdot R_k(\mathbf{q}^2) \mathbf{\Phi}(-\mathbf{q}).$$

How to preserve gauge invariance?

Solution: make the regulator A-dependent!

[Morris, N. Phys. B '00] [Codello, Percacci et coll., EPJC '16] [Bartosh, PRB '13]

$$\Delta S_k = \frac{1}{2} \int_{\mathbf{x}} \Phi(\mathbf{x}) \cdot R_k (-\partial_{\mu}^2) \Phi(\mathbf{x}) \to \Delta S_k [\mathbf{A}] = \frac{1}{2} \int_{\mathbf{x}} \Phi(\mathbf{x}) \cdot R_k (-D_{\mu}^2) \Phi(\mathbf{x})$$

Modified flow equations in presence of A.

Which approximation procedure do we use?

First idea: BMW to obtain full momentum dependence (as done for the study of the Higgs mode).

Problem: it fails!

- Impossible to close the flow equations rigorously.
- Setting momenta to zero in flow equations breaks down gauge invariance.
- Vertices have a nontrival momenta dependence due to the derivative in j_{μ}^{a} ...
- ...so it is not possible to close the equations without additional uncontrolled approximations...
- ...which break Ward identities!

Which approximation procedure do we use?

First idea: BMW to obtain full momentum dependence (as done for the study of the Higgs mode).

Problem: it fails!

- Impossible to close the flow equations rigorously.
- Setting momenta to zero in flow equations breaks down gauge invariance.
- Vertices have a nontrival momenta dependence due to the derivative in j_{μ}^{a} ...
- ...so it is not possible to close the equations without additional uncontrolled approximations...
- ...which break Ward identities!

LPA"

$$\begin{split} \mathsf{F}_{k}[\mathbf{\Phi},\mathbf{A}] &= \int_{\mathbf{x}} \frac{1}{2} (D_{\mu} \mathbf{\Phi}) \cdot Z_{k} (-\mathbf{D}^{2}) (D_{\mu} \mathbf{\Phi}) + \frac{1}{4} (\mathbf{\Phi} \cdot \partial_{\mu} \mathbf{\Phi}) Y_{k} (-\partial^{2}) (\mathbf{\Phi} \cdot \partial_{\mu} \mathbf{\Phi}) + U_{k}(\rho) \\ &+ \frac{1}{4} F_{\mu\nu}^{a} X_{1,k} (-\mathbf{D}^{2}) F_{\mu\nu}^{a} + \frac{1}{4} F_{\mu\nu}^{a} T^{a} \mathbf{\Phi} \cdot X_{2,k} (-\mathbf{D}^{2}) F_{\mu\nu}^{b} T^{b} \mathbf{\Phi}. \end{split}$$

Expression of conductivity within LPA"

$$\sigma_A(\omega) = 2\rho_0 Z(\omega^2) / (\omega + i0^+) + \omega [X_1(\omega^2) + 2\rho_0 X_2(\omega^2)],$$

$$\sigma_B(\omega) = \omega X_1(\omega^2).$$

 $\rho = \Phi^2/2$, $\rho_{0,k}$: minimum of the potentiel.

Origins: Goldstone-modes controlled physics. Gauge-invariant action:

$$\Gamma^{\rm eff}[\boldsymbol{\pi},\mathbf{A}] = Z \int_{\mathbf{x}} [(\partial_{\mu} - A_{\mu})\boldsymbol{\pi}]^2 + \cdots$$

Free bosons $\rightarrow \sigma_B$ computed via Wick's theorem,

$$\langle jj \rangle \sim \int_{\mathbf{q}} \Gamma^{(2,1)} G_{\mathsf{T}}(\mathbf{q}) \Gamma^{(2,1)} G_{\mathsf{T}}(\mathbf{p}+\mathbf{q}).$$

• Z factors disappear.

• $N = \infty$ result recovered.