Disorder in order:
 Anderson localization in a randomless cold atom system

MAX PLANCK INSTITUTE
 OF QUANTUM OPTICS

Félix Rose
Schmidt Group, Theory division

CMT Seminar
April 27, 2020

Introduction - Disorder in quantum physics

> Why study disorder in quantum physics?

Disorder is at the heart of several quantum phenomena:

- Electronic transport at low temperatures.
- Anomalous magneto-resistance.
[Sharvin \& Sharvin, JETP Lett. '81; Pannetier et al., PRL '84]
- Scattering of light by disorder (speckle pattern, back-scattering).
[Kuga \& Ishimaru, JOSA A '81; Wolf \& Maret, PRL '85, Albada \& Lagendijk, PRL '85]
- Anderson localization via wave interference effects [Anderson, PR '58].

Introduction - Handwavey explanation of disorder effect

Question: what is the probability $n(\mathbf{r}, t)$ to diffuse from the origin to \mathbf{r} in a time t ? "Simple" image: $n(\mathbf{r}, t)$ expressed as a sum over scattering paths.

$$
n(\mathbf{r}, t)=\left|\sum_{\text {path } i} A_{i}\right|^{2}=\underbrace{\sum_{\text {path } i}\left|A_{i}\right|^{2}}_{\text {classical }}+\underbrace{\sum_{\text {path } i \neq \text { path } j} A_{i} A_{j}^{*}}_{\text {quantum }} .
$$

Classical contribution: diffusion.

Quantum corrections (path interference) that survive disorder average can reduce diffusion.
\rightarrow localization.

l_{e} : elastic mean-free path.

1 and 2d: always localized, 3d: Anderson transition.
Image only valid in the weak-disorder regime, $k l_{e} \gg 1$.

Introduction - Observations of Anderson localization

Initial motivation: spin transport in doped semiconductors [Feher and Gere, PR '59]. Issue: difficult to separate disorder and many-body effects...

Wave phenomenon: observation with

- microwaves [Dalichaouch et al., Nature '91];
- light waves [Schwartz et al., Nature '07].

Light propagating through a photonic lattice without (left) and with (right) disorder.

Experiments in atomic matter waves [Billy et al., Nature 'o8; Jendrzejewski et al., Nature '12].

Expansion of a $3 d$ BEC in presence of a weakly- (top) or strongly- (top) disordered speckle potential.

Introduction - perturbation theory

More rigorous treatment: perturbation theory in powers of the disorder potential!
[Akkermans and Montambaux, CUP '07]

Scattering event \simeq vertex

$$
A_{i}, A_{i}^{\star} \simeq G^{R, A}
$$

Probability of quantum diffusion

$$
\begin{gathered}
n(\mathbf{r}, \omega) \propto \overline{G_{E}^{R}(0, \mathbf{r}) G_{E-\omega}^{A}(\mathbf{r}, 0)} \quad(E: \text { particle energy) } \\
G_{E}^{R, A}(0, \mathbf{r})=\langle 0|\left[\hat{H}-\left(E \pm i 0^{+}\right)\right]^{-1}|\mathbf{r}\rangle: \text { Green's functions. }
\end{gathered}
$$

(\cdot : disorder average)
E.g.: equal paths = ladder diagrams
\rightarrow (classical) diffusion \times

Introduction - Coherent back-scattering

Time-reversal symmetry \rightarrow reversed path has no dephasing...
...provided startpoint = endpoint!
Exemple: light shined at a colloid \rightarrow coherent backscattering.

[Wiersma et al., RSI '95]

Coherent, dephased

(NASA)

Introduction - A localization effect?

Backscattering: evidence of weak localization.

- Similar effect in electron transport: anomalous magnetoresistance. Magnetic field breaks down TRS \rightarrow dephasing, enhanced conductivity.
- ...but nonetheless perturbative effect: in 3d, Anderson localization happens at strong disorder.
- Other methods to go beyond: replica trick, supersymmetry.

Main message

- Even for non-interacting problems, disorder is complicated.
- Methods connected to many-body physics!

Introduction - Contents

Our goals:

- Set up a mapping between a disordered problem and a polaron many-body system.
- Extend of the mapping, experimental relevance?
- Comparison of exact results for disordered problem and variational methods for the polaron.

A simple model of disorder

Edwards model: describe e.g. magnetic impurities in a metal,

$$
\hat{H}=\frac{\hat{\mathbf{p}}^{2}}{2 m}+\underbrace{V(\hat{\mathbf{r}})}, \quad V(\hat{\mathbf{r}})=\sum_{i=1}^{N} v\left(\hat{\mathbf{r}}-\mathbf{r}_{i}\right)
$$

- \mathbf{r}_{i} : position of N scattering impurities, chosen randomly (e.g. uniform).
- $v(\mathbf{r})$: scattering potential, e.g. $v(\mathbf{r})=g \delta(\mathbf{r})$ (random Kronig-Penney model).

Disorder average of observables

$$
\begin{gathered}
\overline{\langle\hat{n}(\mathbf{r}, t)\rangle} \propto \int \mathrm{d} \mathbf{r}_{1} \cdots \mathrm{~d} \mathbf{r}_{N}\left\langle\psi^{\left\{\mathbf{r}_{j}\right\}}(t)\right| \hat{n}(\mathbf{r})\left|\psi^{\left\{\mathbf{r i r i}_{j}\right\}}(t)\right\rangle, \\
\left|\psi^{\left\{\mathbf{r}_{i}\right\}}(t)\right\rangle=\mathrm{e}^{\left.-\mathrm{i} \hat{i} \hat{H}_{j} \mathbf{r}_{i}\right\}}\left|\psi_{0}\right\rangle: \text { state evolved for given disorder configuration }\left\{\mathbf{r}_{i}\right\} .
\end{gathered}
$$

Bose polaron model

Fermionic impurity immersed in a bosonic bath

$$
\hat{H}=\underbrace{\sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}}^{\dagger} \hat{c}_{\mathbf{k}}}_{\hat{c}: \text { impurity (free particle) }}+\underbrace{\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}}_{\text {bath with no interactions }}+\underbrace{\int_{\mathbf{r}, \mathbf{r}^{\prime}} \hat{c}_{\mathbf{r}}^{\dagger} \hat{c}_{\mathbf{r}} v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \hat{b}_{\mathbf{r}^{\prime}}^{\dagger} \hat{b}_{\mathbf{r}^{\prime}}}_{\text {interspecies interaction }}
$$

- \hat{c} : single impurity \rightarrow wavefunction $\psi(\mathbf{r})$.
- \hat{b} : free boson bath, prepared initially in $|B E C\rangle \propto\left(\hat{b}_{\mathbf{k}=0}^{\dagger}\right)^{N}|0\rangle$.
- $\mathrm{v}(\mathbf{r})$: density-density interaction.

Recent observations:
${ }^{39} \mathrm{~K}$ in ${ }^{39} \mathrm{~K}$ [Jørgensen et al., PRL '16], ${ }^{40} \mathrm{~K}$ in ${ }^{87} \mathrm{Rb}$ [Hu et al., PRL '16], ${ }^{40} \mathrm{~K}$ in ${ }^{23} \mathrm{Na}$ [Yu et al., arXiv '19].

Mapping to the Edwards model I

Heavy bath limit: $m_{\mathrm{B}} \rightarrow \infty, \omega_{\mathbf{k}} \rightarrow 0$.
Step 1: assume that at $t=0,\left|\bar{I}_{0}\right\rangle=|\psi\rangle \otimes\left|\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\rangle$.
[Grover and Fischer, JSM '14]
Then $\left\{\begin{array}{l}m_{\mathrm{B}}=\infty \rightarrow \text { bosons remain in }\left|\mathbf{r}_{1}, \ldots, \mathbf{r}_{\mathrm{N}}\right\rangle, \\ \text { impurity feels potential of scatterers at }\left\{\mathbf{r}_{\mathrm{i}}\right\} .\end{array}\right.$
i.e. $|\equiv(t)\rangle=\left|\psi^{\left\{\mathbf{r}_{j}\right\}}(t)\right\rangle \otimes\left|\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\rangle$
where $\left|\psi^{\left\{\mathbf{r}_{i}\right\}}(t)\right\rangle$ is evolved with $\underbrace{H^{\left\{\mathbf{r}_{i}\right\}}=\frac{\hat{\mathbf{p}}^{2}}{2 m_{1}}+\sum_{i=1}^{N} v\left(\hat{\mathbf{r}}-\mathbf{r}_{i}\right) .}_{\text {Edwards Hamiltonian }}$.

Massive bosons
\simeq fixed scatterers.

Mapping to the Edwards model II

$$
\left.(\text { Because } \mid \text { BEC }\rangle \propto\left(\hat{b}_{\mathbf{k}=0}^{\dagger}\right)^{N}|0\rangle!\right)
$$

Step 2: if system initially prepared in $\left|\Xi_{0}\right\rangle=\left|\psi_{0}\right\rangle \otimes|\mathrm{BEC}\rangle \propto \int_{\left\{\mathbf{r}_{i}\right\}}|\psi\rangle \otimes\left|\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\rangle$,

$$
|\equiv(t)\rangle \propto \int_{\left\{\mathbf{r}_{i}\right\}}\left|\psi^{\left\{\mathbf{r}_{i}\right\}}(t)\right\rangle \otimes\left|\mathbf{r}_{1}, \ldots, \mathbf{r}_{N}\right\rangle
$$

For any observable \hat{O} of the impurity (e.g. $\hat{\mathbf{r}}, \hat{\mathbf{r}}^{2}, \hat{n}(\mathbf{r})$),

$$
\underbrace{\langle\equiv(t)| \hat{O}|\equiv(t)\rangle}_{\text {many-body }}=\int_{\left\{\mathbf{r}_{i}\right\}} \underbrace{\left\langle\psi^{\left\{\mathbf{r}_{i}\right\}}(t)\right| \hat{O}\left|\psi^{\left\{\mathbf{r}_{i}\right\}}(t)\right\rangle .}_{\text {single particle }}
$$

Many-body measurement \equiv disorder average for the Edwards model.

Properties of the mapping

Disorder-free, many-body bose polaron model \Longleftrightarrow disordered, single-particle Edwards model.

Generality of the mapping?

- $v(\mathbf{r})$ can be any potential \rightarrow probe universality of disorder.
- Bath prepared in state $|\Phi\rangle \rightarrow\left\{\mathbf{r}_{i}\right\}$ sampled with $p\left(\left\{\mathbf{r}_{i}\right\}\right)=\left|\left\langle\left\{\mathbf{r}_{i}\right\} \mid \Phi\right\rangle\right|^{2}$. More complicated disorders can be explored: $|\Phi\rangle$ Fermi sea?
- Remains valid with several impurities: metallic transport, many-body localization?

Limit: in real life $m_{B}<\infty$. Hopefully not too bad at short times.

Leads for observation?

Candidate for large mass imbalance: [Häfner et al., PRA '17] ${ }^{6} \mathrm{Li}$ in ${ }^{133} \mathrm{Cs}, m_{\mathrm{B}} / m_{1}=22.1$.

Cs-Li $B \simeq 889 \mathrm{G}$ resonance, $a_{\mathrm{Cs}-\mathrm{Cs}}=150 a_{0}$.

Could 3d Anderson localization be investigated?

From disordered metals: transition at $k_{\mathrm{F}} l_{e} \sim 1$; mean free path $l_{e} \simeq 1 /\left(n_{\mathrm{Cs}} a_{\mathrm{Li}-\mathrm{Cs}^{2}}^{2}\right)$.

Three body losses: $\partial_{\mathrm{t}} N_{\mathrm{Li}} / N_{\mathrm{Li}} \sim-L_{3}\left(a_{\mathrm{Li}-\mathrm{Cs}}\right) n_{\mathrm{Cs}}^{2}$.
Possible observation: $a_{\text {Li-cs }}$ "small" and

- Fermi sea of ${ }^{6} \mathrm{Li}$;
- few impurities at "small" k.

E.g.: Raman spectroscopy, [Shkedrov et al., arXiv '19].

Application - estimating the variational method

Possible application of the mapping: compare, for 1d, the exact results for the Edwards model and approximate variational method for the polaron model

Scenario: impurity prepared in gaussian wavepacket $\psi(\mathbf{r}, t=0) \propto \mathrm{e}^{-\mathrm{r}^{2} / 2 \sigma^{2}}$.

$$
\psi(\mathbf{r}, \mathrm{t})=\text { ? }
$$

Interest:

- Showcase the mapping!
- Benchmark the variational Ansätze.
- Stepping stone towards variational method where there is no exact solution (higher dimension, finite boson mass).

Exact solution of the Edwards model

1d Hamiltonian

$$
\hat{H}=\frac{-\partial_{x}^{2}}{2 m}+g \sum_{i=1}^{N} \delta\left(x-x_{i}\right)
$$

$\hat{H} \psi=E \psi$ with $E=k^{2} / 2 m$ implies

- for $x_{i}<x<x_{i+1}, \psi(x)=A_{i} \sin \left(k x+\varphi_{i}\right)$;
- at $x_{i}, \psi^{\prime}\left(x_{i}^{+}\right)-\psi^{\prime}\left(x_{i}^{-}\right)=2 m g \psi\left(x_{i}\right)$.

System of equations for A_{i}, φ_{i}.
[Nieuwenhuizen, Physica A '83]

- Boundary conditions \rightarrow spectrum.
- Numerical solution of the system \rightarrow eigenstates!

$$
g=5 \times 10^{-3}
$$

$$
g=5 \times 10^{-2}
$$

$$
g=1.5
$$

First three eigenstates $\psi_{1}, \psi_{2}, \psi_{3}$ for different disorder strengths at given x_{i}.

Variational principle - method

Polaron Hamiltonian

$$
\begin{aligned}
\hat{H}= & \sum_{\mathbf{k}} \epsilon_{\mathbf{k}} \hat{c}_{\mathbf{k}}^{\dagger} \hat{\mathbf{k}}_{\mathbf{k}}+\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}} \\
& +\int_{\mathbf{r}, r^{\prime}} \hat{c}_{\mathbf{r}}^{\dagger} \hat{c}_{\mathbf{r}} v\left(\mathbf{r}-\mathbf{r}^{\prime}\right) \hat{b}_{\mathbf{r}^{\prime}}^{\dagger} \hat{\mathbf{b}}^{\prime}
\end{aligned}
$$

Our goal: simple study of the polaron model via time-dependent variational method.
(see e.g Tommaso's talk!)

Idea: restrict oneself to a variationnal manifold $\mathcal{M}=\left\{\left|\equiv\left(z_{i}\right)\right\rangle, z_{i} \in \mathbb{C}\right\}$.
Schrödinger equation $\mathrm{id}_{t}|\equiv\rangle=\hat{H}|\equiv\rangle$ is approximated by

- minimizing $\|\left(i_{t}-\hat{H}\right)|\equiv\rangle \|$ wrt \dot{z}_{i};
- eqs. of motion of Lagrangian $L=\langle\equiv| i_{t}-\hat{H}|\equiv\rangle$ wrt z_{i}, \dot{z}_{i};
- projecting out $i_{t}|\equiv\rangle=\hat{H}|\equiv\rangle$ on \mathcal{M}.

Equivalent under reasonable assumptions! ($\left.\partial_{z_{i}^{*}}|\equiv\rangle=0\right)$

Variational method - Chevy Ansatz

Simplest polaron Ansatz [Chevy, PRA '06]:

$$
|\equiv(t)\rangle=\alpha_{0} \underbrace{|\mathbf{p}\rangle \otimes|B E C\rangle}_{\text {initial state }}+\sum_{\mathbf{q} \neq 0} \alpha_{\mathbf{q}} \underbrace{|\mathbf{p}+\mathbf{q}\rangle \otimes \hat{b}_{-\mathbf{q}}^{\dagger} \hat{b}_{0}|\mathrm{BEC}\rangle}_{\text {single excitation of the BEC }}
$$

- Only allow for a single excitation of the BEC.
- Wavepacket reconstructed by adding different modes.

Issue: we except that the impurity should exchange small momentum with many bosons \rightarrow not covered by the Ansatz...

Variational method - Coherent state

Tool: Lee-Low-Pines transform [Lee et al., PR '53].
Idea: move to the reference frame of the impurity via $\hat{S}=\exp (\overbrace{i \overrightarrow{\hat{\mathbf{r}}}}^{\text {impurity }} \underbrace{\sum_{\mathbf{k}}}_{\text {boson momentum }} \mathbf{k} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}})$.
In the new frame $\hat{H}^{L L P}=\hat{S}^{\dagger} \hat{H} \hat{S}$, the impurity momentum \mathbf{p} is conserved.
Extensively used: [Devreese and Alexandrov, RPP '09; Shashi et al., PRA '14; Schadilova et al., PRL '16...].
$\left|\bar{\Xi}_{0}\right\rangle=|\mathbf{p}\rangle \otimes|B E C\rangle \Longrightarrow|\equiv(t)\rangle=|\mathbf{p}\rangle \otimes\left|\mathrm{BEC}_{\mathbf{p}}(t)\right\rangle$,
the BEC is evolved under a p-dependent Hamiltonian \hat{H}^{P}.

Coherent state approximation: $\left|\mathrm{BEC}_{\mathbf{p}}(t)\right\rangle \propto \exp \left(\sum_{\mathbf{k}} \beta_{\mathbf{k}}^{\mathbf{p}}(t) \hat{b}_{\mathbf{k}}^{\dagger}\right)|0\rangle$.

Variational method - Coherent state

Tool: Lee-Low-Pines transform [Lee et al., PR '53].
Idea: move to the reference frame of the impurity via $\hat{S}=\exp (\overbrace{\hat{\hat{\mathbf{r}}}}^{\text {impurity }} \cdot \underbrace{\sum_{\mathbf{k}}}_{\text {boson momentum }} \mathbf{k} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}})$.
In the new frame $\hat{H}^{L L P}=\hat{S}^{\dagger} \hat{H} \hat{S}$, the impurity momentum \mathbf{p} is conserved.
Extensively used: [Devreese and Alexandrov, RPP '09; Shashi et al., PRA '14; Schadilova et al., PRL '16...].
$\left|\bar{\Xi}_{0}\right\rangle=|\mathbf{p}\rangle \otimes|\mathrm{BEC}\rangle \Longrightarrow|\equiv(t)\rangle=|\mathbf{p}\rangle \otimes\left|\mathrm{BEC}_{\mathbf{p}}(t)\right\rangle$, the BEC is evolved under a \mathbf{p}-dependent Hamiltonian \hat{H}^{p}.

$$
\hat{H}^{\mathbf{p}}=\frac{\left(\mathbf{p}-\sum_{\mathbf{k}} \mathbf{k} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}\right)^{2}}{2 m_{\mathrm{I}}}+\sum_{\mathbf{k}} \omega_{\mathbf{k}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}}+g \sum_{\mathbf{k} \mathbf{k}^{\prime}} \hat{b}_{\mathbf{k}}^{\dagger} \hat{b}_{\mathbf{k}^{\prime}}
$$

Coherent state approximation: $\left|\mathrm{BEC}_{\mathbf{p}}(t)\right\rangle \propto \exp \left(\sum_{\mathbf{k}} \beta_{\mathbf{k}}^{\mathbf{p}}(t) \hat{b}_{\mathbf{k}}^{\dagger}\right)|0\rangle$.

Results: spread of the wavepacket

Localization is observed on the spread of a wavepacket: $\quad\left[\mathbf{r} \rightarrow \mathbf{r} / \sigma, t \rightarrow t /\left(2 m_{,} \sigma^{2} / \hbar\right)\right]$ If $\psi(\mathbf{r}, t=0) \propto \mathrm{e}^{-\mathbf{r}^{2} / 2},|\psi(\mathbf{r}, t)|^{2} \propto \begin{cases}\mathrm{e}^{-\mathbf{r}^{2} /\left[1+(t / 2)^{2}\right]} & \text { if } g=0 \longrightarrow \text { diffusion, } \Delta r \sim t / 2 \\ \mathrm{e}^{-|\mathbf{r}| / \xi} & \text { if } g \neq 0 \longrightarrow \text { localization, } \Delta r \sim \xi .\end{cases}$

$$
t=2 \quad t=5
$$

$$
t=10
$$

$$
t=20
$$

Conclusion and outlook

Overlook:

- Existence of an exact mapping between Bose polaron and disordered system.
- New way to probe variety of disorder physics.
- Variational method: possible simple tool to examine disorder physics.
- Chevy misses localization, coherent states capture qualitative behavior.

Prospects:

- Gaussian states?
- Finite mass behavior: complementary method?
- Transport properties.
- Coming soon to the arXiv!

Collaborator:
Richard Schmidt.

Thanks for your attention!

