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Introduction — Disorder in quantum physics

Why study disorder in quantum physics?

Disorder is at the heart of several quantum phenomena:

Electronic transport at low temperatures.

Anomalous magneto-resistance.
[Sharvin & Sharvin, JETP Lett. ’81; Pannetier et al., PRL ’84]

Scattering of light by disorder (speckle pattern, back-scattering).
[Kuga & Ishimaru, JOSA A ’81; Wolf & Maret, PRL ’85, Albada & Lagendijk, PRL ’85]

Anderson localization via wave interference effects [Anderson, PR ’58].
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Introduction — Handwavey explanation of disorder effect

Question: what is the probability 𝑛(𝐫, 𝑡) to diffuse from the origin to 𝐫 in a time 𝑡?
“Simple” image: 𝑛(𝐫, 𝑡) expressed as a sum over scattering paths.

𝑛(𝐫, 𝑡) = | ∑
path 𝑖

𝐴𝑖|
2
= ∑

path 𝑖
|𝐴𝑖|2

⏟
classical

+ ∑
path 𝑖≠path 𝑗

𝐴𝑖𝐴∗𝑗
⏟⏟⏟⏟⏟⏟⏟

quantum

.

Classical contribution: diffusion.

Quantum corrections (path interference) that
survive disorder average can reduce diffusion.

→ localization.

𝑙𝑒

𝑖

𝑗

𝐫′
𝐫

Scatterers

𝑙𝑒: elastic mean-free path.

1 and 2𝑑: always localized, 3𝑑: Anderson transition.
Image only valid in the weak-disorder regime, 𝑘𝑙𝑒 ≫ 1.
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Introduction — Observations of Anderson localization

Initial motivation: spin transport in doped semiconductors [Feher and Gere, PR ’59].
Issue: difficult to separate disorder and many-body effects...

Wave phenomenon: observation with

microwaves [Dalichaouch et al., Nature ’91];

light waves [Schwartz et al., Nature ’07].
Light propagating through a photonic lattice
without (left) and with (right) disorder.

Experiments in atomic matter waves [Billy et al., Nature ’08; Jendrzejewski et al., Nature ’12].

Expansion of a 3𝑑 BEC in presence of a weakly- (top) or strongly- (top)
disordered speckle potential.
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Introduction — perturbation theory

More rigorous treatment: perturbation theory in powers of the disorder potential!
[Akkermans and Montambaux, CUP ’07]

𝐺𝑅

𝐺𝐴

𝐫′
𝐫

Scattering event ≃ vertex
𝐴𝑖, 𝐴∗𝑖 ≃ 𝐺𝑅,𝐴

Probability of quantum diffusion

𝑛(𝐫, 𝜔) ∝ 𝐺𝑅𝐸 (0, 𝐫)𝐺𝐴𝐸−𝜔(𝐫, 0) (𝐸: particle energy)

𝐺𝑅,𝐴𝐸 (0, 𝐫) = ⟨0|[�̂� − (𝐸 ± i0+)]−1|𝐫⟩: Green’s functions.

( • : disorder average)

Path = diagram
Dephasing = relevance of the path
Family of paths = class of diagrams

E.g.: equal paths = ladder diagrams
→ (classical) diffusion

=
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Introduction — Coherent back-scattering

Time-reversal symmetry→ reversed path has no dephasing...
...provided startpoint = endpoint!

Exemple: light shined at a colloid→ coherent backscattering.

𝜃

Diffusion

𝜃

Coherent, dephased

𝜃 = 0

Coherent backscattering

[Wiersma et al., RSI ’95]

CBS in BaSO4.

(NASA)

Saturn rings.
White spot→ CBS.
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Introduction — A localization effect?

Backscattering: evidence of weak localization.

Similar effect in electron transport: anomalous magnetoresistance.
Magnetic field breaks down TRS→ dephasing, enhanced conductivity.

...but nonetheless perturbative effect: in 3𝑑, Anderson localization happens at
strong disorder.

Other methods to go beyond: replica trick, supersymmetry.

Main message
Even for non-interacting problems, disorder is complicated.

Methods connected to many-body physics!
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Introduction — Contents

Our goals:

Set up a mapping between a disordered problem and a polaron many-body
system.

Extend of the mapping, experimental relevance?

Comparison of exact results for disordered problem and variational methods
for the polaron.
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A simple model of disorder

Edwards model: describe e.g. magnetic impurities in a metal, [Edwards, PM ’58]

�̂� =
�̂�2

2𝑚
+ 𝑉( ̂𝐫)⏟

random potential

, 𝑉( ̂𝐫) =
𝑁

∑
𝑖=1

𝑣( ̂𝐫 − 𝐫𝑖).

𝐫𝑖: position of 𝑁 scattering impurities, chosen randomly (e.g. uniform).

𝑣(𝐫): scattering potential, e.g. 𝑣(𝐫) = 𝑔𝛿(𝐫) (random Kronig-Penney model).

Disorder average of observables

⟨�̂�(𝐫, 𝑡)⟩ ∝ ∫d𝐫1 ⋯d𝐫𝑁 ⟨𝜓{𝐫𝑖}(𝑡)|�̂�(𝐫)|𝜓{𝐫𝑖}(𝑡)⟩,

|𝜓{𝐫𝑖}(𝑡)⟩ = e−i�̂�
{𝐫𝑖}𝑡|𝜓0⟩ ∶ state evolved for given disorder configuration {𝐫𝑖}.
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Bose polaron model

Fermionic impurity immersed in a bosonic bath

�̂� = ∑
𝐤

𝜖𝐤 ̂𝑐†𝐤 ̂𝑐𝐤
⏟

̂𝑐: impurity (free particle)

+ ∑
𝐤

𝜔𝐤�̂�
†
𝐤�̂�𝐤

⏟
�̂�: bath with no interactions

+ ∫
𝐫,𝐫′

̂𝑐†𝐫 ̂𝑐𝐫𝑣(𝐫 − 𝐫′)�̂�†𝐫′�̂�𝐫′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

interspecies interaction

.

̂𝑐: single impurity→ wavefunction 𝜓(𝐫).

�̂�: free boson bath, prepared initially in
|BEC⟩ ∝ (�̂�†𝐤=0)

𝑁|0⟩.

𝑣(𝐫): density-density interaction.
�̂�, 𝑚B ̂𝑐, 𝑚I

𝑣(𝐫)

Recent observations:
39K in 39K [Jørgensen et al., PRL ’16], 40K in 87Rb [Hu et al., PRL ’16], 40K in 23Na [Yu et al., arXiv ’19].
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Mapping to the Edwards model I

Heavy bath limit: 𝑚B → ∞, 𝜔𝐤 → 0.

Step 1: assume that at 𝑡 = 0, |Ξ0⟩ = |𝜓⟩ ⊗ |𝐫1, … , 𝐫𝑁⟩.

Then {
𝑚B = ∞ → bosons remain in |𝐫1, … , 𝐫𝑁⟩,

impurity feels potential of scatterers at {𝐫𝑖}.

i.e. |Ξ(𝑡)⟩ = |𝜓{𝐫𝑖}(𝑡)⟩ ⊗ |𝐫1, … , 𝐫𝑁⟩

where |𝜓{𝐫𝑖}(𝑡)⟩ is evolved with 𝐻{𝐫𝑖} =
�̂�2

2𝑚I
+

𝑁

∑
𝑖=1

𝑣( ̂𝐫 − 𝐫𝑖)
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Edwards Hamiltonian

.

[Grover and Fischer, JSM ’14]

Massive bosons
≃ fixed scatterers.
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Mapping to the Edwards model II

(Because |BEC⟩ ∝ (�̂�†𝐤=0)
𝑁|0⟩!)

Step 2: if system initially prepared in |Ξ0⟩ = |𝜓0⟩ ⊗ |BEC⟩ ∝ ∫
{𝐫𝑖}

|𝜓⟩ ⊗ |𝐫1, … , 𝐫𝑁⟩,

|Ξ(𝑡)⟩ ∝ ∫
{𝐫𝑖}

|𝜓{𝐫𝑖}(𝑡)⟩ ⊗ |𝐫1, … , 𝐫𝑁⟩.

For any observable �̂� of the impurity (e.g. ̂𝐫, ̂𝐫2, �̂�(𝐫)),

⟨Ξ(𝑡)|�̂�|Ξ(𝑡)⟩⏟
many-body

= ∫
{𝐫𝑖}

⟨𝜓{𝐫𝑖}(𝑡)|�̂�|𝜓{𝐫𝑖}(𝑡)⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
single particle

.

Many-body measurement ≡ disorder average for the Edwards model.
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Properties of the mapping

Disorder-free, many-body bose polaron model
⟺

disordered, single-particle Edwards model.

Generality of the mapping?

𝑣(𝐫) can be any potential→ probe universality of disorder.

Bath prepared in state |Φ⟩ → {𝐫𝑖} sampled with 𝑝({𝐫𝑖}) = |⟨{𝐫𝑖}|Φ⟩|2.
More complicated disorders can be explored: |Φ⟩ Fermi sea?

Remains valid with several impurities: metallic transport, many-body
localization?

Limit: in real life 𝑚B < ∞. Hopefully not too bad at short times.
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Leads for observation?

 L i | 1 / 2 , + 1 / 2 〉  ⊕  C s | 3 , 3 〉
 L i | 1 / 2 , - 1 / 2 〉  ⊕  C s | 3 , 3 〉
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Candidate for large mass imbalance: [Häfner et al., PRA ’17]
6Li in 133Cs, 𝑚B/𝑚I = 22.1.

Cs-Li 𝐵 ≃ 889G resonance, 𝑎Cs−Cs = 150𝑎0.

Could 3𝑑 Anderson localization be investigated?

From disordered metals: transition at 𝑘F𝑙𝑒 ∼ 1; mean free path 𝑙𝑒 ≃ 1/(𝑛Cs𝑎2Li−Cs).

Three body losses: ∂𝑡𝑁Li/𝑁Li ∼ −𝐿3(𝑎Li−Cs)𝑛2Cs.

Possible observation: 𝑎Li−Cs “small” and

Fermi sea of 6Li;

few impurities at “small” 𝐤.
E.g.: Raman spectroscopy, [Shkedrov et al., arXiv ’19].
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Application — estimating the variational method

Possible application of the mapping: compare, for 1𝑑, the exact results for the
Edwards model and approximate variational method for the polaron model

Scenario: impurity prepared in gaussian wavepacket 𝜓(𝐫, 𝑡 = 0) ∝ e−𝐫
2/2𝜎2 .

𝜓(𝐫, 𝑡) = ?

Interest:

Showcase the mapping!

Benchmark the variational Ansätze.

Stepping stone towards variational method where there is no exact solution
(higher dimension, finite boson mass).
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Exact solution of the Edwards model

1𝑑 Hamiltonian

�̂� =
−∂2𝑥
2𝑚

+ 𝑔 ∑𝑁𝑖=1 𝛿(𝑥 − 𝑥𝑖)

�̂�𝜓 = 𝐸𝜓 with 𝐸 = 𝑘2/2𝑚 implies

for 𝑥𝑖 < 𝑥 < 𝑥𝑖+1, 𝜓(𝑥) = 𝐴𝑖 sin(𝑘𝑥 + 𝜑𝑖);

at 𝑥𝑖, 𝜓′(𝑥+𝑖 ) − 𝜓′(𝑥−𝑖 ) = 2𝑚𝑔𝜓(𝑥𝑖).

System of equations for 𝐴𝑖, 𝜑𝑖. [Nieuwenhuizen, Physica A ’83]

Boundary conditions→ spectrum.

Numerical solution of the system→ eigenstates!

0 𝐿
−4𝐿−1/2

0

4𝐿−1/2

𝐫

𝜓𝑛(𝐫)

𝑔 = 5 × 10−3

0 𝐿
𝐫

𝑔 = 5 × 10−2

0 𝐿
𝐫

𝑔 = 1.5

First three eigenstates 𝜓1, 𝜓2, 𝜓3 for different disorder strengths at given 𝑥𝑖.
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Variational principle — method

Polaron Hamiltonian

�̂� = ∑
𝐤

𝜖𝐤 ̂𝑐†𝐤 ̂𝑐𝐤 + ∑
𝐤

𝜔𝐤�̂�
†
𝐤�̂�𝐤

+ ∫
𝐫,𝐫′

̂𝑐†𝐫 ̂𝑐𝐫𝑣(𝐫 − 𝐫′)�̂�†𝐫′�̂�𝐫′

Our goal: simple study of the polaron model via
time-dependent variational method.

(see e.g Tommaso’s talk!)

Idea: restrict oneself to a variationnal manifoldℳ = {|Ξ(𝑧𝑖)⟩, 𝑧𝑖 ∈ ℂ}.

Schrödinger equation i∂𝑡|Ξ⟩ = �̂�|Ξ⟩ is approximated by

minimizing ‖(i∂𝑡 − �̂�)|Ξ⟩‖ wrt �̇�𝑖;

eqs. of motion of Lagrangian 𝐿 = ⟨Ξ|i∂𝑡 − �̂�|Ξ⟩ wrt 𝑧𝑖, �̇�𝑖;

projecting out i∂𝑡|Ξ⟩ = �̂�|Ξ⟩ onℳ.

Equivalent under reasonable assumptions! (∂𝑧∗𝑖 |Ξ⟩ = 0)
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Variational method — Chevy Ansatz

Simplest polaron Ansatz [Chevy, PRA ’06]:

|Ξ(𝑡)⟩ = 𝛼0 |𝐩⟩ ⊗ |BEC⟩⏟
initial state

+∑
𝐪≠0

𝛼𝐪 |𝐩 + 𝐪⟩ ⊗ �̂�†−𝐪�̂�0|BEC⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
single excitation of the BEC

Only allow for a single excitation of the BEC.

Wavepacket reconstructed by adding different modes.

Issue: we except that the impurity should exchange small momentum with many
bosons→ not covered by the Ansatz...
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Variational method — Coherent state

Tool: Lee–Low–Pines transform [Lee et al., PR ’53].

Idea: move to the reference frame of the impurity via �̂� = exp (i
impurity

⏞̂𝐫 ⋅ ∑
𝐤

𝐤�̂�†𝐤�̂�𝐤)
⏟

boson momentum

.

In the new frame �̂�LLP = �̂�†�̂��̂�, the impurity momentum 𝐩 is conserved.
Extensively used: [Devreese and Alexandrov, RPP ’09; Shashi et al., PRA ’14; Schadilova et al., PRL ’16...].

|Ξ0⟩ = |𝐩⟩ ⊗ |BEC⟩ ⟹ |Ξ(𝑡)⟩ = |𝐩⟩ ⊗ |BEC𝐩(𝑡)⟩,
the BEC is evolved under a 𝐩-dependent Hamiltonian �̂�𝐩.

�̂�𝐩 =
(𝐩 − ∑𝐤 𝐤�̂�

†
𝐤�̂�𝐤)

2

2𝑚I
+ ∑

𝐤
𝜔𝐤�̂�

†
𝐤�̂�𝐤 + 𝑔∑

𝐤𝐤′
�̂�†𝐤�̂�𝐤′ .

Coherent state approximation: |BEC𝐩(𝑡)⟩ ∝ exp (∑
𝐤

𝛽𝐩𝐤 (𝑡)�̂�
†
𝐤)|0⟩.
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Variational method — Coherent state

Tool: Lee–Low–Pines transform [Lee et al., PR ’53].

Idea: move to the reference frame of the impurity via �̂� = exp (i
impurity

⏞̂𝐫 ⋅ ∑
𝐤

𝐤�̂�†𝐤�̂�𝐤)
⏟

boson momentum

.

In the new frame �̂�LLP = �̂�†�̂��̂�, the impurity momentum 𝐩 is conserved.
Extensively used: [Devreese and Alexandrov, RPP ’09; Shashi et al., PRA ’14; Schadilova et al., PRL ’16...].

|Ξ0⟩ = |𝐩⟩ ⊗ |BEC⟩ ⟹ |Ξ(𝑡)⟩ = |𝐩⟩ ⊗ |BEC𝐩(𝑡)⟩,
the BEC is evolved under a 𝐩-dependent Hamiltonian �̂�𝐩.

�̂�𝐩 =
(𝐩 − ∑𝐤 𝐤�̂�

†
𝐤�̂�𝐤)

2

2𝑚I
+ ∑

𝐤
𝜔𝐤�̂�

†
𝐤�̂�𝐤 + 𝑔∑

𝐤𝐤′
�̂�†𝐤�̂�𝐤′ .

Coherent state approximation: |BEC𝐩(𝑡)⟩ ∝ exp (∑
𝐤

𝛽𝐩𝐤 (𝑡)�̂�
†
𝐤)|0⟩.
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Results: spread of the wavepacket

Localization is observed on the spread of a wavepacket: [𝐫 → 𝐫/𝜎, 𝑡 → 𝑡/(2𝑚I𝜎2/ℏ)]

If 𝜓(𝐫, 𝑡 = 0) ∝ e−𝐫
2/2, |𝜓(𝐫, 𝑡)|2 ∝ {

e−𝐫
2/[1+(𝑡/2)2] if 𝑔 = 0 ⟶ diffusion, Δ𝑟 ∼ 𝑡/2

e−|𝐫|/𝜉 if 𝑔 ≠ 0 ⟶ localization, Δ𝑟 ∼ 𝜉.

−5 0 510−3
10−2
10−1

𝐫

|𝜓(𝐫, 𝑡)|2

𝑡 = 2

−5 0 5
𝐫

𝑡 = 5

−5 0 5
𝐫

𝑡 = 10

−5 0 5
𝐫

𝑡 = 20

Wavepacket width:
Δ𝑟 = √⟨(𝐫 − ⟨𝐫⟩2)⟩.

0 10 20 30
0
5
10
15
20

𝑡

Δ𝑟

Chevy Ansatz
Coherent state
Exact (Edwards)
Free diffusion 𝑔 = 0
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Conclusion and outlook

Overlook:

Existence of an exact mapping between Bose polaron and disordered system.

New way to probe variety of disorder physics.

Variational method: possible simple tool to examine disorder physics.

Chevy misses localization, coherent states capture qualitative behavior.

Prospects:

Gaussian states?

Finite mass behavior: complementary method?

Transport properties.

Coming soon to the arXiv! Collaborator:
Richard Schmidt.

Thanks for your attention!
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