Bibliometrics can be found in my Google Scholar profile.

Journal articles

  1. “Feshbach Resonances in Exciton–Charge-Carrier Scattering in Semiconductor Bilayers,” M. Wagner, R. Ołdziejewski, F. Rose, V. Köder, C. Kuhlenkamp, A. İmamoğlu, and R. Schmidt.
    Phys. Rev. Lett. 134, 076903 (2025), arXiv:2310.08729 [cond-mat.mes-hall]. [PDF]
  2. “Operator product expansion coefficients from the nonperturbative functional renormalization group,” F. Rose, C. Pagani, and N. Dupuis.
    Phys. Rev. D 105, 065020 (2022), arXiv:2110.13174 [hep-th]. [PDF]
  3. “Disorder in order: Localization without randomness in a cold-atom system,” F. Rose and R. Schmidt.
    Phys. Rev. A 105, 013324 (2022), arXiv:2107.06931 [cond-mat.quant-gas]. [PDF]
  4. “Functional-renormalization-group approach to strongly coupled Bose-Fermi mixtures in two dimensions,” J. von Milczewski, F. Rose, and R. Schmidt.
    Phys. Rev. A 105, 013317 (2022), arXiv:2104.14017 [cond-mat.quant-gas]. [PDF]
  5. “Hall viscosity and conductivity of two-dimensional chiral superconductors,” F. Rose, O. Golan and S. Moroz.
    SciPost Phys. 9, 006 (2020), arXiv:2004.02590 [cond-mat.supr-con]. [PDF]
  6. “Nonperturbative renormalization-group approach preserving the momentum dependence of correlation functions,” F. Rose and N. Dupuis.
    Phys. Rev. B 97, 174514 (2018), arXiv:1801.03118 [cond-mat.stat-mech]. [PDF]
  7. “Superuniversal transport near a (2+1)-dimensional quantum critical point,” F. Rose and N. Dupuis.
    Phys. Rev. B 96, 100501(R) (2017), arXiv:1705.03905 [cond-mat.str-el]. [PDF]
  8. “Nonperturbative functional renormalization-group approach to transport in the vicinity of a (2+1)-dimensional O(N)-symmetric quantum critical point,” F. Rose and N. Dupuis.
    Phys. Rev. B 95, 014513 (2017), arXiv:1610.06476 [cond-mat.str-el]. [PDF]
  9. “Critical Casimir forces from the equation of state of quantum critical systems,” A. Rançon, L.-P. Henry, F. Rose, D. Lopes Cardozo, N. Dupuis, P. C. W. Holdsworth, and T. Roscilde.
    Phys. Rev. B 94, 140506(R) (2016), arXiv:1606.03205 [cond-mat.stat-mech]. [PDF]
  10. “Bound states of the φ4 model via the nonperturbative renormalization group,” F. Rose, F. Benitez, F. Léonard, and B. Delamotte.
    Phys. Rev. D 93, 125018 (2016), arXiv:1604.05285 [cond-mat.stat-mech]. [PDF]
  11. “Higgs amplitude mode in the vicinity of a (2+1)-dimensional quantum critical point: A nonperturbative renormalization-group approach,” F. Rose, F. Léonard, and N. Dupuis.
    Phys. Rev. B 91, 224501 (2015), arXiv:1503.08688 [cond-mat.quant-gas]. [PDF]
  12. “Spin- and valley-dependent magneto-optical properties of MoS2,” F. Rose, M. O. Goerbig, and F. Piéchon.
    Phys. Rev. B 88, 125438 (2013), arXiv:1307.2884 [cond-mat.mes-hall]. [PDF]

Posters and presentations given

  • “Probability distribution function of the 2d Ising order parameter.” [Slides]
  • “Strongly coupled Bose-Fermi mixtures in 2d.” [Slides]
  • “The nonperturbative functional renormalization group for classical and bosonic systems: overview and examples.” [Slides]
  • “Operator product expansion coefficients from the nonperturbative functional renormalization group.” [Slides]
  • “Disorder in order: Anderson localization in a randomless cold atom system.” [Slides]
  • “Disorder in order: simulating a random scattering potential with a randomless cold atom system.” [Slides] [Video]
  • “Hall conductivity and viscosity of a two-dimensional chiral p+ip superconductor.” [Slides]
  • “Real-time dynamics with FRG: overcoming the burden of analytic continuation.” [Slides]
  • “Dynamics and transport in the vicinity of a quantum phase transition.” [Slides]
  • “Conductivity in the vicinity of a quantum critical point.” [Slides] [Video]
  • “Higgs mode and conductivity in the vicinity of a quantum critical point.” [Poster]
  • “Critical Casimir forces and quantum phase transitions.” [Slides]

Conferences attended

Ph.D. dissertation

“Dynamics and transport in the vicinity of a two-dimensional quantum critical point.”
<tel-01872537>. [Manuscript] [Slides]